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Summary

2

•Formulation of quantum tunneling

•Application to the Schwinger mechanism

The Schwinger mechanism can be regarded as tunneling.

Ours is inspired by the Lefschetz-thimble method. 
       
(cf. the Dykhne-Davis-Pechukas (DDP) method)



Schwinger Mechanism
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In an external field (anti)particle pair production makes 
the perturbative vacuum unstable.

•Nonperturbative effect in quantum electrodynamics 

•Tunneling from antiparticle states to particle states

V(z) = − Ezz .
z

m

−m

We consider an electric field along the    direction.z

Γ ≃ exp (−
πm2

eE ) .The decay width is given by

Energy

E = (0 ,0 , Ez)

Energies are tilted by
Dirac sea

Particle 
states



Schwinger Mechanism as Tunneling
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Hamiltonian describing Schwinger mechanism is given by

t

For A(t) = − Et , H is called the Landau-Zener model.

where
m2

⊥ = m2 + k2
x + k2

y ,

Ez = − ∂tA(t) .{
H(t)ψi(t) = Ei(t)ψi(t) (i = ± ) .Nonadiabatic energies are defined by

E+(t)

E−(t)

Energy

The transition probability is analytically calculable 
with an initial condition,

P(k) = |ψ+(∞) |2 = exp (−
πm2

⊥

eE )
This is the Landau-Zener formula.

ψ+(−∞) = 0 .
δE ≡ E+ − E− ≠ 0



Analytic Continuation
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However, there can exist closing points tc ∈ ℂ such that δE(tc) = 0 .

tcThe DDP formula makes use of 
such that

For t ∈ ℝ , δE(t) ≡ E+(t) − E−(t) ≠ 0 .

For example, when A(t) = − Et , δE(t) = 2 (kz + eEt)2 + m2
⊥ .

δE(tc) = 0 ⇒ tc = −
kz

eE
± i

m⊥

eE

Im tc > 0 .



DDP Approximation Formula
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Although it is approximation scheme, 
it surprisingly gives the analytical result for LZ model.

Then, − 2ImΔ(tc) = − 4Im ∫
tc

0
dt (kz + eEt)2 + m2

⊥ = −
πm2

⊥

eE
.

When A(t) = − Et , δE(t) = 2 (kz + eEt)2 + m2
⊥ and tc = −

kz

eE
+ i

m⊥

eE[ [
P(k) = exp (−

πm2
⊥

eE ) = PDDP

PDDP = exp [−2Im∫
tc

0
δE(t)dt] ≡ exp [−2ImΔ(tc)]



“Derivation” of DDP Formula
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a+(∞) ≃ ∫
∞

−∞
dt exp [iΔ(t) + ln η(t)] where η(t) = ψ*−(t) ·ψ+(t) .

tc

a+(∞) ≃ exp[iΔ(tc)]{ ⇒ P = exp[−2ImΔ(tc)]}

Contour transformation reminds us the Lefschetz-thimble method.

The square of a transition amplitude a+(∞) gives the probability , P = a+(∞)
2

.

1. We expand the solution of i∂tψ = Hψ as ψ = ∑
i=±

aiψie−iEit .

2. We derive coupled equation for a±(t) and solve them using first order truncation .
E+(t)

E−(t)
only once

3. We change the original integration contour in order to 
    pick up contribution from tc .

Re t



Lefschetz-Thimble Method
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Z = ∫ dz exp [−S(z)] .We employ the semiclassical approximation for

∂S
∂z

z=zi

= 0 thimbles1. We find all saddle points, zs,i .

2. We draw (dual) thimbles defined by the flow equation.

dz
dτ

= ± ∂S
∂z

with z(τ = 0) = zs,i d
dτ

Im S[z(τ)] = 0 ,
d
dτ

Re S[z(τ)] ≥ 0 ( ≤ 0)

Good properties of the flow

3. The thimbles contributing to Z are determined by the intersection #.

= Their dual thimbles intersect the original integration contour.



Examples of Lefschetz Thimbles
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Z(ℏ) = ∫ dz exp[−S(z)/ℏ] where S(z) = z2/2 + z4/4 . ⇒ zs,i = 0, ± i

-2 -1 0 1 2
-2

-1

0

1

2

Re z

Im
z

-2 -1 0 1 2
-2

-1

0

1

2

Re z

Im
z

arg ℏ > 0 arg ℏ < 0

The Stokes phenomenon occurs at arg ℏ = 0 .

We complexify     and focus on the blue line.ℏ



Lefschetz-Thimble Inspired Method
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a+(∞) ≃ ∫
∞

−∞
dt exp [iΔ(t) + ln η(t)] ≡ ∫

∞

−∞
dt exp[−S(t)] .

We apply the Lefschetz-thimble method to

ts,i : i-th saddle point

ni : i-th intersection #

cf. w/o                   reproduces DDP formula.ln η(t) , a+(∞)

dΔ
dt

t=tc

= δE(tc) = 0 ⇒ aDDP
+ (∞) = exp [iΔ(tc)]

We use the Gaussian approximation to get

aLT
+ (∞) = ∑

i

nieiθi−S(ts,i)
2π

|S′ ′ (ts,i) |
.

θi : angle of i-th thimble

θi
ts,i



Modified Landau-Zener Model
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When τ < T ,DDP works. When τ ≥ T , DDP fails to work.

We consider the following model.

tc = iτ but tpole = iT .
•It reduces to the Landau-Zener model in the limit of 
•There exist not only 

T → ∞ .

tc = iτ

Re t

tc = iτ

Re t

tpole = iT

tpole = iT



Thimble Structure
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Lines { Solid: thimbles 
Dashed: dual thimbles 
Dotted: DDP contour

Dots{ Cross: poles 
Filled: saddle points 
Open: closing points

The red thimble  
only contribute.



Comparison of Two Methods
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Our method
DDP
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DDP DDP

log10[P(τ, T = 3 − τ, Λ = 10)]

•a 
•Fake peak occurs due to Gaussian approximation.

τ = 1.5 is a boundary for DDP .



Schwinger Mechanism Revisited
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When A(t) = − Et ,
it reduces the Landau-Zener model.

Ez =
E

cosh2 ωt [ ⇒ A(t) = −
E
ω

tanh ωt] , γ ≡
mω
eE

.

We consider a Sauter-type field and define the Keldysh parameter.

The Hamiltonian describing Schwinger mech.

There exist a closing point                                         and a poletc =
1
ω

tanh−1 (−
γkz

m
+ i

γm⊥

m ) tpole = i
π

2ω
.



Sauter-Type Field
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ADDP ≃
πm2

⊥

2m ( 1
m + γkz

+
1

m − γkz )
•For small     DDP works very well.γ ,

We define    by A P(k) ≡ exp (−Am2/eE) .

A →
πm2

⊥

m2
as γ → 0

A → ∞ as kz → ± m
γ

= ± eE
ω

{
γ ≡

mω
eE

•For large     DDP fails.γ ,
DDP
Full

Our method

1 2 3 4 5
1.0
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�

A

m = 3 , eE = 3

γ ≡
mω
eE

( = ω)

For simplicity, we set k = 0 .

Then, tc = i
1
ω

tan−1 γ , tpole = i
π

2ω
.

When γ → ∞ , tc gets closer to tpole .



Dynamically Assisted Schwinger Mech.
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Ez = E +
ε

cosh2 ωt [ ⇒ A(t) = − Et −
ε
ω

tanh ωt] (E ≫ ε)

Γ ∼ exp (−
Am2

eE ) .The worldline instanton gives the decay width as

We consider superposition of const. + Sauter-type field.

0 1 2 3

2

3

�0

S 0
γ = π/2

A

γ ≡
mω
eE

• F 

•A

m ≫ ω , m2 ≫ eE are assumed .

Poles of tanh(ωt) play pivotal roles .



Dynamically Assisted Schwinger Mech.
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DDP
Full
Worldline (E=10�)

Our method

0.5 1.0 1.5 2.0 2.5 3.0
1.5
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�

A
m = 3 , eE = 3 , E = 10ε

m ≫ ω , m2 ≫ eE
γ =

mω
eE

= ω

•DDP works well for small 
•DDP asymptotically approaches to Worldline. 
•Our method always gives reasonable answer.

γ .



Summary & Prospect
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! Formulation of quantum tunneling

! Application to the Schwinger mechanism

•We dealt with it as two-level systems. 
•We apply our method comparing with DDP.

? Stokes phenomenon in tunneling effects

aLT
+ (∞) = ∑

i

nieiθi−S(ts,i)
2π

|S′ ′ (ts,i) |
cf . aDDP

+ (∞) = exp [iΔ(tc)]

E+(t)

E−(t)


