TQFT, integrable lattice model, and quiver gauge theories

Toshihiro Ota Osaka university, RIKEN iTHEMS

Part1 (math) : Based on the seminar series with mathematicians at iTHEMS (Many thanks to Hokuto, Masaki, Kenta and Genki!)

Part2 (phys) : Based on the joint work with Kazunobu Maruyoshi and Junya Yagi, "Wilson-'t Hooft lines as transfer matrices," [2009.12391]

Aim of Part1

I would like to introduce the followings to general audience in a mathematical language:

- What is quantum field theory (QFT)?
- What is lattice model?
- What does integrable mean?

In turn, the 2nd part of my talk is on "an integrable lattice model emerges from a certain class of quantum gauge theories."

(I also hope these will lead to a good exchange among us, especially between physicists and mathematicians.)

Contents

□ What is quantum field theory (QFT)?

□ Lattice model as discrete QFT

□ Integrable lattice model

1-page introduction to quantum mechanics

Let's start from quantum mechanics (QM) (it actually turns out to be 1d QFT)

Suppose we have a 1d mfd (time) M^1 = interval or S^1 (or \mathbb{R}), and data to specify a QM:

 $-\mathcal{H}$: a vector space (state space)

 $-\mathcal{O}$: a set of self-adjoint operators (observables, acting on \mathcal{H})

 $-H \in \mathcal{O}$: an operator called *Hamiltonian*

Two most crucial properties of QM (Comment : I do not get into "imaginary time")

1. For an interval $M^1 = [t_0, t_1]$, we have a linear map (time evolution)

2. For a circle $M^1 = S^1_\beta$, we get a number (partition function)

$$\operatorname{Tr}_{\mathscr{H}} e^{-\beta H}$$

1-page introduction to quantum mechanics

Let's start from quantum mechanics (QM) (it actually turns out to be 1d QFT)

Two most crucial properties of QM:

1. For interval $M^1 = [t_0, t_1]$, we have a linear map (time evolution)

2. For circle $M^1 = S_{\beta}^1$, we get a number (partition function)

We expect a QFT in general dimensions M^{d+1} also has the properties:

— Given a manifold with <u>boundary</u>,

produces <u>vectors</u> at the boundary & <u>linear maps</u> among them

- Given a <u>closed</u> manifold, produces a <u>number</u>
- Compatible with cutting & gluing the manifolds

What is QFT?

Atiyah axiomatized *topological* QFT from the physical inputs ('88).

<u>Axiom</u> ((d+1)-dimensional TQFT)

A (d+1)-dim. TQFT is defined by Z_T satisfying the following properties (1), (2), and (A1)-(A5):

(1) For a closed d-dim. mfd N^d , associate a <u>finite</u> dim. *C*-vector space \mathcal{H}_N (state space):

$$Z_T(N^d) = \mathcal{H}_N$$
 1/2 of Canonical quantization

(2) For a (d+1)-dim. mfd M^{d+1} , $\partial M^{d+1} = N^d$, associate a vector (state):

$$Z_T(M^{d+1}) \in \mathscr{H}_N$$

Path integral quantization

Atiyah's TQFT axiom

(A1) (involutory) $\mathscr{H}_{-N} = \mathscr{H}_{N}^{*}$

(A2) (multiplicative) $\mathcal{H}_{N_1 \sqcup N_2} = \mathcal{H}_{N_1} \otimes \mathcal{H}_{N_2}$

From the conditions so far, for a (d+1)-dim. mfd \tilde{M} , $\partial \tilde{M} = -N_1 \sqcup N_2$, we have a linear map:

$$Z_T(\tilde{M}) \in \operatorname{Hom}_{\mathbb{C}}(\mathcal{H}_{N_1}, \mathcal{H}_{N_2})$$

i.e. a cobordism between d-dim. mfds defines the time evolution

Atiyah's TQFT axiom

(A3) $Z_T(\emptyset) = \mathbb{C}$. (-> for $\partial M = \emptyset$, $Z_T(M) \in \mathbb{C}$. Partition function)

(A4) For cobordisms M_1, M_2 , s.t. $\partial M_1 = -N_1 \sqcup N_2$ and $\partial M_2 = -N_2 \sqcup N_3$, $Z_T(M_1 \cup_{N_2} M_2) = Z_T(M_2) Z_T(M_1)$

(A5) For an interval *I*, the linear map is <u>trivial</u>:

$$Z_T(I \times N) = \mathrm{id}_{\mathcal{H}_N}$$

In topological theory, the time evolution is trivial for an interval. (*e.g.* (2+1)-d Chern-Simons theory is a TQFT and its Hamiltonian $\equiv 0$.)

Atiyah's TQFT axiom

All in all, Atiyah's (d+1)-dim. TQFT Z_T^{d+1} defines a functor from

Obj = d-dim. closed manifolds Mor = cobordisms

to

$$Z_T^{d+1} : \operatorname{Bord}_{d+1} \longrightarrow \operatorname{Vect}_{\mathbb{C}}$$

For more general QFTs (*i.e.* not TQFT), the axiom needs to be somehow modified. In general, a *model* is (expected to be) defined by some functor Z.

Contents

\blacksquare What is quantum field theory (QFT)?

A functor *Z*, which gives a number for a closed mfd : $Z(M) \in \mathbb{C}$. (Specify *Z* = Define a model)

□ Lattice model as discrete QFT

Integrable lattice model

What is lattice model?

(d+1)-dim. QFT : for a (d+1)-dim. closed mfd *M*, defines a number (partition function) $Z_Q^{d+1}(M) \in \mathbb{C}$

(d+1)-dim. lattice model : for a (d+1)-dim. lattice *L*, defines a number (again this is called partition function) $Z_{L}^{d+1}(L) \in \mathbb{C}$

"Lattice model is discrete QFT"

In this talk I focus on d = 0 or 1 case only.

Prominent example : the Ising model

Setup : 2d lattice & spin configuration

<u>2d lattice on torus \mathbb{T}^2 </u>

$$L := \mathbb{Z}_M \times \mathbb{Z}_N$$
$$= \{1, \cdots, M\} \times \{1, \cdots, N\}$$
$$I = (i \mod M, j \mod N) \in L$$

Spin configuration on the lattice *L* is a map :

$$\mathbf{s}: L \to \{+1, -1\}$$

+1: up spin, -1: down spin

Let S(L) be the space of all the spin configurations.

Prominent example : the Ising model

One of the simplest models of spin system; only the nearest neighbor spins have interaction. (Comment for physicists : here I set J=1)

The partition function of 2d Ising model is defined by

$$Z(L, E_{\text{Ising}}; \beta) := \sum_{\mathbf{s} \in S(L)} e^{-\beta E_{\text{Ising}}(\mathbf{s})}$$

$$\text{closed mfd} \qquad \text{Action/Lagrangian}$$

Prominent example : the Ising model

$$Z(L, E_{\text{Ising}}; \beta) := \sum_{\mathbf{s} \in S(L)} e^{-\beta E_{\text{Ising}}(\mathbf{s})}$$

 $\beta \in \mathbb{R}_{\geq 0}$, and the summand is generically called *Boltzmann weight*.

To discuss integrability, we need to introduce another quantity called the *free energy* in the thermodynamic limit $M, N \rightarrow \infty$:

$$-\beta F(\beta) := \lim_{N,M\to\infty} \frac{1}{NM} \log Z(\beta)$$

Physical FACT

For a general statistical model, any thermodynamical quantities (in principle) can be obtained from the free energy.

Contents

☑ What is quantum field theory (QFT)?

A functor *Z*, which gives a number for a closed mfd : $Z(M) \in \mathbb{C}$

☑ Lattice model as discrete QFT

Lattice model is defined by the "discrete version" of partition function Z

□ Integrable lattice model

Finally I should say something more about

— What does "integrable" mean?

- How about operator/Hamiltonian formalism in lattice model?

Unfortunately, there is no canonical definition of "integrability" in this context. From the <u>physical fact</u>, we may say a model is integrable (solvable) if one can compute the exact free energy:

$$-\beta F(\beta) := \lim_{N,M\to\infty} \frac{1}{NM} \log Z(\beta)$$

As it turns out, Integrable

= Can compute an exact free energy

= Can compute an exact partition function

(= Can diagonalize the transfer matrix)

To explain these, let us consider 1d Ising model and introduce *transfer matrix*

Define the energy functional of 1d Ising model by

$$E_{1d \text{ Ising}}(\mathbf{s}) := -\sum_{i=1}^{N} s_i s_{i+1}$$
$$\mathbf{s} : L_{1d} \to \{\pm 1\}$$
$$L_{1d} = \mathbb{Z}_N = \{1, \cdots, N\}$$

The partition function of 1d Ising model is given by

$$Z(L_{1d}, E_{1d}; \beta) := \sum_{\mathbf{s} \in S(L_{1d})} e^{-\beta E_{1d}(\mathbf{s})}$$
$$= \sum_{s_1, \dots, s_N = \pm 1} e^{\beta s_1 s_N} \cdots e^{\beta s_3 s_2} e^{\beta s_2 s_1}$$

Introduce a 2x2 matrix, called *transfer matrix* :

$$T = \left(e^{\beta s s'}\right)_{s,s'=\pm 1} = \left(\begin{array}{cc}e^{\beta} & e^{-\beta}\\ e^{-\beta} & e^{\beta}\end{array}\right)$$

Then the partition function becomes

$$Z(\beta) = \sum_{s_1, \dots, s_N = \pm 1} e^{\beta s_1 s_N} \cdots e^{\beta s_3 s_2} e^{\beta s_2 s_1}$$
$$= \sum_{s_1, \dots, s_N = \pm 1} T_{s_1 s_N} \cdots T_{s_3 s_2} T_{s_2 s_1}$$
$$= \sum_{s_1 = \pm 1} (T^N)_{s_1 s_1} = \operatorname{Tr}_{\mathbb{C}^2} T^N$$
quantum state space of 1d Ising spin chain

We have the state space \mathbb{C}^2 at the boundary of each 1d segment, and the transfer matrix sends a state to the adjacent site, which is the "time evolution" of this system: $\log T \propto$ Hamiltonian

$$Z(\beta) = \operatorname{Tr}_{\mathbb{C}^2} T^N, \quad T = \begin{pmatrix} e^{\beta} & e^{-\beta} \\ e^{-\beta} & e^{\beta} \end{pmatrix}$$

From this expression, we immediately obtain the exact free energy from the largest eigenvalue of *T* : let the eigenvalues be $\lambda_1 > \lambda_2$,

$$-\beta F(\beta) = \lim_{N \to \infty} \frac{1}{N} \log Z(\beta)$$
$$= \lim_{N \to \infty} \frac{1}{N} \log \lambda_1^N \left(1 + \left(\frac{\lambda_2}{\lambda_1}\right)^N \right)$$
$$= \log \lambda_1 = \log(2 \cosh \beta)$$

Integrable

- = Can compute an exact free energy
- = Can compute an exact partition function
- = Can diagonalize the transfer matrix

Contents

☑ What is quantum field theory (QFT)?

A functor *Z*, which gives a number for a closed mfd : $Z(M) \in \mathbb{C}$

☑ Lattice model as discrete QFT

Lattice model is defined by the "discrete version" of partition function Z

☑ Integrable lattice model

Integrable = Can compute an exact free energy (partition function)

To be continued to the 2nd part

Plan of the 2nd part

□ Integrability revisited, in the language of physics

□ Elliptic & trigonometric transfer matrix from L-operators

Wilson-'t Hooft lines as transfer matrices

□ Emergence of integrability from TQFT in extra dimensions

TQFT, integrable lattice model, and quiver gauge theories

Toshihiro Ota Osaka university, RIKEN iTHEMS

Part1 (math) : Based on the seminar series with mathematicians at iTHEMS

Part2 (phys) : Based on the joint work with Kazunobu Maruyoshi and Junya Yagi, "Wilson-'t Hooft lines as transfer matrices," [2009.12391]

Aim of Part2

To explain the correspondence :

[Maruyoshi-TO-Yagi]

Gauge theory side Lattice model side Wilson-'t Hooft lines = transfer matrices

- $\mathcal{N} = 2$ circular quiver theory on $S^1 \times \mathbb{R}^3$
- Wrap a Wilson-'t Hooft line T around S^1
- $\langle T \rangle$ is a function of Coulomb branch parameters
- Quantization of $\langle T \rangle$ coincides with the transfer matrix of trigonometric quantum integrable system
- Related to other correspondences via string dualities

Notice

The details might be too technical, you can ignore them. Today's message is the above correspondence, that's all.

2d lattice model

2d lattice model

Boltzmann weight

2d lattice model

R-matrix = Boltzmann weight w/ spectral parameter *z*

Integrability = Yang-Baxter equation

 $\sum_{\alpha,\beta,\gamma} R_{j\beta}^{i\alpha}(z_1,z_2) R_{k\gamma}^{\alpha l}(z_1,z_3) R_{\gamma n}^{\beta m}(z_2,z_3) = \sum_{\alpha,\beta,\gamma} R_{k\gamma}^{j\beta}(z_2,z_3) R_{\gamma n}^{i\alpha}(z_1,z_3) R_{\beta m}^{\alpha l}(z_1,z_2)$

Contents

□ Integrability revisited, in the language of physics

- □ Elliptic & trigonometric transfer matrix from L-operators *Lattice model side*
- Wilson-'t Hooft lines as transfer matrices
 Gauge theory side
- □ Emergence of integrability from TQFT in extra dimensions

Today's message

"Wilson-'t Hooft lines = transfer matrices" The details might be too technical, you can ignore them.

Classical integrability

= Can exactly solve an EoM

We know classical integrable systems such as

Harmonic oscillator

$$H = \frac{1}{2}p^2 + \frac{1}{2}x^2$$

Kepler problem

$$H = \frac{1}{2}(p_1^2 + p_2^2) - \frac{k}{r}$$

But why?

Classical integrability

= Can exactly solve an EoM

Theorem (Liouville)

In *n* dimensional system, if there exist *n* independent conserved quantities, then the eom can be exactly solved.

1d Harmonic oscillator

$$H = \frac{1}{2}p^2 + \frac{1}{2}x^2$$

 \rightarrow energy E

2d Kepler problem

$$H = \frac{1}{2}(p_1^2 + p_2^2) - \frac{k}{r}$$

 \rightarrow energy *E*, angular momentum *L*

How about field theory?

Classical integrability

= Can exactly solve an EoM

Integrable field theories: KdV, sine-Gordon, 2d Toda, ...

E.g. KdV eq.
$$\frac{\partial u(t,x)}{\partial t} = \frac{\partial^3 u}{\partial x^3} - 6u \frac{\partial u}{\partial x}$$

has infinite number of conserved quantities:

• • •

$$I_{1} = \int u dx,$$

$$I_{2} = \int u^{2} dx,$$

$$I_{3} = \int \left(2u^{3} + (\partial_{x}u)^{2}\right) dx,$$

$$I_{4} = \int \left(5u^{4} + 10u(\partial_{x}u)^{2} + (\partial_{x}^{2}u)^{2}\right) dx,$$

Enough number of conserved quantities = Large enough symmetry of the system So far classical, quantum integrability?

Quantum integrability

= Can compute an exact partition function (or can diagonalize a Hamiltonian)

When?

R-matrix satisfying Yang-Baxter eq.

implies large enough symmetry of the system

2d lattice model

= discretized (Euclidean) QFT

Transfer matrix (=time evolution from states *i*s to states *j*s)

l1

l2

*l*n-1

ln

Partition function on nxm periodic lattice

$$\sum_{\{\text{config.}\}} \prod_{\{\text{vertices}\}} R_{kl}^{ij}(z) = \operatorname{Tr} T(z)^m$$

2d lattice model

= discretized (Euclidean) QFT

<u>FACT</u> From Yang-Baxter equation for $R_{kl}^{ij}(z)$ (+ unitarity condition), the transfer matrices with different spectral parameters commute:

FACT (Bethe ansatz)

 $[T(z), T(z')] = 0 \Rightarrow$ Can obtain all the eigenvalues of T(z)

Integrability = Yang-Baxter eq. for $R_{kl}^{ij}(z)$ = commuting transfer matrix

Contents

- Integrability revisited, in the language of physics
 Quantum integrability = Commuting transfer matrices
- □ Elliptic & trigonometric transfer matrix from L-operators *Lattice model side*
- Wilson-'t Hooft lines as transfer matrices
 Gauge theory side
- □ Emergence of integrability from TQFT in extra dimensions

Today's message

"Wilson-'t Hooft lines = transfer matrices" The details might be too technical, you can ignore them.

Lattice model side

Consider a periodic quantum spin chain

Spins $a^1, ..., a^n \in \mathfrak{h}^*$, $\mathfrak{h} = \text{Cartan of } \mathfrak{S}l_N$:

$$a^{r} = \operatorname{diag}(a_{1}^{r}, \dots, a_{N}^{r}), \quad \sum_{i=1}^{N} a_{i}^{r} = 0$$

 a^r are called *dynamical parameters* in the integrable model literature.

Local Hilbert space at each site : $\mathcal{M}_{\mathfrak{h}^*} = \{\text{meromorphic functions on } \mathfrak{h}^* \},$ Total Hilbert space : $\mathcal{H} = \mathcal{M}_{\mathfrak{h}^*}^{\otimes n}$

Lattice model side

Place the spin chains on a cylindrical lattice.

Transfer matrix is a horizontal loop operator, thought of as the world-line of a particle whose Hilbert space is \mathbb{C}^N ; its state changes as it crosses other lines.

Suppose the particle depends on a continuous parameter, which turns out to be a spectral parameter $z \in \mathbb{C}$.

Transfer matrix of two kinds of lines consists of *n* copies of *L-operator* (a cousin of R-matrix) :

Lattice model side

Two crossing red lines give R-matrix (scattering of the particles; S-matrix!):

Here, Yang-Baxter eq. is called *RLL relation*, from which it follows that the transfer matrices commute and the model becomes integrable:

<u>FACT</u> The elliptic L-operator and the dynamical R-matrix satisfy RLL relation. [Etingof-Varchenko, Ruijsenaars, Hasegawa]

Lattice model side

The L-operator acts on $\mathcal{M}_{\mathfrak{h}^*} \otimes \mathcal{M}_{\mathfrak{h}^*}$ as difference operator and spins jump across the red lines:

$$L(z) = \sum_{i,j} L\left(z; a^1, a^2\right)_i^j \Delta_i^1 \Delta_j^2, \quad \Delta_i^r : a^r \mapsto a^r - \epsilon h_i$$

$$\epsilon \in \mathbb{C}$$
 is a constant parameter, $h_1 = (1 - 1/N, -1/N, \dots, -1/N)$, etc.

The transfer matrix from *n* copies of L-operator acts on the total Hilbert space $\mathscr{H} = \mathscr{M}_{\mathfrak{h}^*}^{\otimes n}$, and defines the discrete time evolution of the spin chain:

$$T(z) = \sum_{i^1, \dots, i^n} \prod_{r=1}^n L\left(z; a^r, a^{r+1}\right)_{i^r}^{i^{r+1}} \prod_{s=1}^n \Delta_{i^s}^s, \quad i^{n+1} = i^1$$

 $L(z) = z \quad \begin{array}{c|c} a^1 - \epsilon h_i & a^2 - \epsilon h_j \\ \hline a^1 & a^2 \end{array}$

Lattice model side

What remain to do, in order to compare to gauge theory side, are

- 1. Take trigonometric limit
- 2. Rewrite the transfer matrix by "more fundamental" L-operator

1. By trigonometric limit, the elliptic L-operator reduces to

$$L(z) \to \mathcal{L}_{w,m}(z) = \sum_{i,j} \left(\Delta_i^1 \Delta_j^2 \right)^{\frac{1}{2}} \frac{\sin \pi \left(z - w + a_j^2 - a_i^1 \right)}{\sin \pi (z - w)} \ell_m \left(a^1, a^2 \right)_i^j \left(\Delta_i^1 \Delta_j^2 \right)^{\frac{1}{2}}$$
$$\ell_m \left(a^1, a^2 \right)_i^j = \left(\frac{\prod_{k(\neq i)} \sin \pi \left(a_k^1 - a_j^2 - m \right) \prod_{l(\neq j)} \sin \pi \left(a_i^1 - a_l^2 - m \right)}{\prod_{k(\neq i)} \sin \pi \left(a_{ki}^1 - \frac{1}{2} \epsilon \right) \sin \pi \left(a_{ik}^1 - \frac{1}{2} \epsilon \right)} \right)^{\frac{1}{2}}$$

This satisfies RLL relation with trigonometric dynamical R-matrix. $w, m \in \mathbb{C}$ are spectral parameters assigned to blue lines.

Lattice model side

2. Further, introduce fundamental L-operators

$$\mathcal{L}_{\pm,m} = \lim_{w \to \pm i\infty} \mathcal{L}_{w,m}$$

then the trigonometric L-operator is written by

$$\mathcal{L}_{w,m}(z) = \frac{e^{\pi i(z-w)}\mathcal{L}_{+,m} - e^{-\pi i(z-w)}\mathcal{L}_{-,m}}{\sin \pi (z-w)}$$

For each $\sigma \in \{\pm\}^n$ and $m \in \mathbb{C}^n$, construct the transfer matrix from the fundamental L-operators:

$$\mathcal{T}_{\sigma,m} = \sum_{i^1,\dots,i^n} \left(\prod_{s=1}^n \Delta_{i_s}^s \right)^{\frac{1}{2}} \prod_{r=1}^n e^{\pi i \sigma^r \left(a_{i^{r+1}}^{r+1} - a_{i^r}^r \right)} \ell_{m^r} \left(a^r, a^{r+1} \right)_{i^r}^{i^{r+1}} \left(\prod_{s=1}^n \Delta_{i_s}^s \right)^{\frac{1}{2}}$$
$$\Delta_i^r : a^r \mapsto a^r - \epsilon h_i$$

Contents

- Integrability revisited, in the language of physics
 Quantum integrability = Commuting transfer matrices
- $\mathbf{\mathfrak{T}} \text{Elliptic \& trigonometric transfer matrix from L-operators} \\ \mathcal{T}_{\sigma,m} = \sum_{i^1,\dots,i^n} \left(\prod_{s=1}^n \Delta_{i_s}^s\right)^{\frac{1}{2}} \prod_{r=1}^n e^{\pi i \sigma^r \left(a_{i^{r+1}}^{r+1} a_{i^r}^r\right)} \ell_{m^r} \left(a^r, a^{r+1}\right)_{i^r}^{i^{r+1}} \left(\prod_{s=1}^n \Delta_{i_s}^s\right)^{\frac{1}{2}}$
- Wilson-'t Hooft lines as transfer matrices

Gauge theory side

□ Emergence of integrability from TQFT in extra dimensions

Today's message

"Wilson-'t Hooft lines = transfer matrices" The details might be too technical, you can ignore them.

Gauge theory side

In general, $4d \mathcal{N} = 2$ gauge theories have half-BPS Wilson-'t Hooft lines, which are the world-line of very massive dyonic particle with charge [Kapustin]

$$(\mathbf{m}, \mathbf{e}) \in \left(\Lambda_{\text{coweight}}(\mathfrak{g}) \times \Lambda_{\text{weight}}(\mathfrak{g})\right) / \text{Weyl}$$

Wilson line has $\mathbf{m} = 0$ and is labeled by the representation of \mathfrak{g} ,

't Hooft line has $\mathbf{e} = 0$ and is labeled by the representation of ${}^{L}\mathbf{g}$.

Wilson-'t Hooft = 't Hooft (monopole background) + Wilson for subgroup of *G* leaving **m** invariant

Gauge theory side

4d $\mathcal{N} = 2$ *n*-node circular quiver theory

Each node: SU(N) vector multiplet, edges: bifundamental hypers with masses $m^1, ..., m^n$

Such a theory is constructed from compactification of 6d (2,0) theory on *n*-punctured torus

[Gaiotto, Gaiotto-Moore-Neitzke, ...]

Gauge theory side

From the 6d theory point of view, Wilson-'t Hooft lines in 4d come from codim-4 defects wrapping 1-cycles on the torus.

Consider a Wilson-'t Hooft line labeled by the 1-cycle:

$$\gamma_{\sigma} = b + \sum_{r} \frac{1 - \sigma^{r}}{2} c^{r}$$

 $\begin{array}{c} a \\ \bullet \\ \bullet \\ c^1 \\ \bullet \\ c^2 \\ \bullet \\ c^3 \\ c^3 \\ \bullet \\ c^3 \\$

If $\sigma^r = +1$ (-1), the cycle passes above (below) the *r*th puncture. The cycle γ_{σ} determines the charge of the Wilson-'t Hooft line $\langle T_{(\mathbf{m},\mathbf{e})} \rangle$ in 4d :

$$\mathbf{m} = h_1^{\vee} \oplus \cdots \oplus h_1^{\vee}$$

e specified by $\sigma \in \{\pm\}^n$

Gauge theory side

Put the circular quiver theory on 4d twisted spacetime $S^1 \times_c \mathbb{R}^2 \times \mathbb{R}$ and consider the Wilson-'t Hooft line $T_{(\mathbf{m},\mathbf{e})}$ wrapping the circle S^1 , whose vev can be computed by supersymmetric localization: [Ito-Okuda-Taki]

$$\left\langle T_{(\mathbf{m},\mathbf{e})} \right\rangle = \sum_{i^{1},\dots,i^{n}} \prod_{r=1}^{n} e^{2\pi \mathrm{i} b_{i^{r}}^{r}} e^{\pi \mathrm{i} \sigma^{r} \left(a_{i^{r+1}}^{r+1} - a_{i^{r}}^{r}\right)} \ell_{m^{r}} \left(a^{r}, a^{r+1}\right)_{i^{r}}^{i^{r+1}}$$
$$\ell_{m} \left(a^{r}, a^{s}\right)_{i}^{j} = \left(\frac{\prod_{k(\neq i)} \sin \pi \left(a_{k}^{r} - a_{j}^{s} - m\right) \prod_{l(\neq j)} \sin \pi \left(a_{i}^{r} - a_{l}^{s} - m\right)}{\prod_{k(\neq i)} \sin \pi \left(a_{ki}^{r} - \frac{1}{2}\epsilon\right) \sin \pi \left(a_{ik}^{r} - \frac{1}{2}\epsilon\right)}\right)^{\frac{1}{2}}$$

where $a^{r} = R(A_{0}^{r} + i\phi_{0}^{r})(\infty), \quad b^{r} = \frac{\Theta^{r}}{2\pi} - \frac{4\pi i R}{g^{2}}\phi_{9}^{r}(\infty)$

We can reproduce the same result by AGT, *i.e.* the Verlinde operator in Toda CFT. [Alday-Gaiotto-Gukov-Tachikawa-Verlinde, Drukker-Gomis-Okuda-Teschner, Gomis-Le Floch]

Correspondence

Compare

$$\langle T_{(\mathbf{m},\mathbf{e})} \rangle = \sum_{i^{1},...,i^{n}} \prod_{r=1}^{n} e^{2\pi \mathrm{i} b_{i^{r}}^{r}} e^{\pi \mathrm{i} \sigma^{r} (a_{i^{r+1}}^{r+1} - a_{i^{r}}^{r})} \ell_{m^{r}} (a^{r}, a^{r+1})_{i^{r}}^{i^{r+1}}$$
$$\mathcal{T}_{\sigma,m} = \sum_{i^{1},...,i^{n}} \left(\prod_{s=1}^{n} \Delta_{i_{s}}^{s} \right)^{\frac{1}{2}} \prod_{r=1}^{n} e^{\pi \mathrm{i} \sigma^{r} \left(a_{i^{r+1}}^{r+1} - a_{i^{r}}^{r}\right)} \ell_{m^{r}} \left(a^{r}, a^{r+1}\right)_{i^{r}}^{i^{r+1}} \left(\prod_{s=1}^{n} \Delta_{i_{s}}^{s}\right)^{\frac{1}{2}}$$

If we quantize a^r, b^r so that

$$\left[\hat{a}_{i}^{r},\hat{b}_{j}^{s}\right] = -\mathrm{i}\frac{\epsilon}{2\pi}\delta^{rs}\left(\delta_{ij}-\frac{1}{N}\right)$$

then

Weyl quantization of
$$\langle T_{(\mathbf{m},\mathbf{e})} \rangle = \mathcal{T}_{\sigma,m}$$

Our claim is the correspondence :

[Maruyoshi-TO-Yagi]

Gauge theory side Lattice model side Wilson-'t Hooft lines = transfer matrices

- $\mathcal{N} = 2$ circular quiver theory on $S^1 \times \mathbb{R}^3$
- Wrap a Wilson-'t Hooft line T around S^1
- $\langle T \rangle$ is a function of Coulomb branch parameters
- Quantization of $\langle T \rangle$ coincides with the transfer matrix of trigonometric quantum integrable system
- <u>Related to other correspondences via string dualities</u>

Notice

The details might be too technical, you can ignore them. Today's message is the above correspondence, that's all.

Contents

- Integrability revisited, in the language of physics
 Quantum integrability = Commuting transfer matrices
- $\mathbf{\mathfrak{T}} \text{Elliptic \& trigonometric transfer matrix from L-operators} \\ \mathcal{T}_{\sigma,m} = \sum_{i^1,\dots,i^n} \left(\prod_{s=1}^n \Delta_{i_s}^s\right)^{\frac{1}{2}} \prod_{r=1}^n e^{\pi i \sigma^r \left(a_{i^{r+1}}^{r+1} a_{i^r}^r\right)} \ell_{m^r} \left(a^r, a^{r+1}\right)_{i^r}^{i^{r+1}} \left(\prod_{s=1}^n \Delta_{i_s}^s\right)^{\frac{1}{2}}$
- ☑ Wilson-'t Hooft lines as transfer matrices

Wilson-'t Hooft line on $S^1 \times \mathbb{R}^3$ = Transfer matrix of trigonometric type

□ Emergence of integrability from TQFT in extra dimensions

Today's message

"Wilson-'t Hooft lines = transfer matrices" The details might be too technical, you can ignore them.

Integrability from TQFT in extra dimensions

M-theory setup

11d spacetime $\mathbb{R}_0 \quad \mathbb{R}_{12}^2 \quad S_3^1 \quad \mathbb{R}_{45}^2 \quad S_6^1 \quad \mathbb{R}_7 \quad \mathbb{R}_8 \quad \mathbb{R}_9 \quad S_{10}^1$ $N \, M5 \quad \mathbb{R}_0 \quad \mathbb{R}_{12}^2 \quad S_3^1 \quad - \quad S_6^1 \quad - \quad - \quad - \quad S_{10}^1$ $n \, M5' \quad \mathbb{R}_0 \quad \mathbb{R}_{12}^2 \quad S_3^1 \quad - \quad - \quad - \quad \mathbb{R}_8 \quad \mathbb{R}_9 \quad M2 \quad - \quad - \quad S_3^1 \quad - \quad S_6^1 \quad - \quad \mathbb{R}_8^+ \quad - \quad -$

 $N \text{ M5}: 6d \ \mathcal{N} = (2,0) \text{ theory on } \mathbb{R}_0 \times \mathbb{R}_{12}^2 \times_{\epsilon} S_3^1 \times S_6^1 \times S_{10}^1$ $n \text{ M5}': n \text{ punctures on the torus } S_6^1 \times S_{10}^1$ M2: Surface defect wrapping $S_3^1 \times S_6^1$

Reduction on $S_6^1 \times S_{10}^1$ gives our 4d setup with a line defect wrapping the circle S_3^1

Integrability from TQFT in extra dimensions

Compactify $\mathbb{R}_9 \to S_9^1$, reduce on S_3^1 , and apply T-duality $S_9^1 \to \check{S}_9^1$, then we now have type IIB string theory setup:

10d spacetime
$$\mathbb{R}_0 \quad \mathbb{R}_{12}^2 \quad \mathbb{R}_{45}^2 \quad S_6^1 \quad \mathbb{R}_7 \quad \mathbb{R}_8 \quad \check{S}_9^1 \quad S_{10}^1$$

 $N \, \mathrm{D5} \quad \mathbb{R}_0 \quad \mathbb{R}_{12}^2 \quad - \quad S_6^1 \quad - \quad - \quad \check{S}_9^1 \quad S_{10}^1$
 $n \, \mathrm{D3} \quad \mathbb{R}_0 \quad \mathbb{R}_{12}^2 \quad - \quad - \quad - \quad \mathbb{R}_8 \quad - \quad -$
 $\mathrm{F1} \quad - \quad - \quad - \quad S_6^1 \quad - \quad \mathbb{R}_8^+ \quad - \quad -$

 $N \text{ D5}: 6d \ \mathcal{N} = (1,1) \text{ SYM on } \mathbb{R}_0 \times \mathbb{R}_{12}^2 \times S_6^1 \times \check{S}_9^1 \times S_{10}^1$ $n \text{ D3}: \text{codim-3 defects on } \mathbb{R}_0 \times \mathbb{R}_{12}^2$ F1: Wilson line on S_6^1

Integrability from TQFT in extra dimensions

 $\Omega\text{-deformation of 6d } \mathcal{N} = (1,1) \text{ SYM on } \mathbb{R}_0 \times \mathbb{R}_{12}^2 \times S_6^1 \times \check{S}_9^1 \times S_{10}^1$ $-> \text{Costello's 4d Chern-Simons on } \mathbb{R}_0 \times S_6^1 \times \check{S}_9^1 \times S_{10}^1 \qquad \text{[Costello-Yagi]}$

n D3 on $\mathbb{R}_0 \times \mathbb{R}_{12}^2 \longrightarrow$ line defects on \mathbb{R}_0 F1 on $S_6^1 \longrightarrow$ Wilson line on S_6^1

Line operators in 4d CS generate integrable lattice models. [Costello, Costello-Witten-Yamazaki] Decompactify $S_9^1 \to \mathbb{R}_9$, this is our trigonometric limit.

Contents

- Integrability revisited, in the language of physics
 Quantum integrability = Commuting transfer matrices
- $\mathbf{\mathfrak{T}}$ Elliptic & trigonometric transfer matrix from L-operators $\mathcal{T}_{\sigma,m} = \sum_{i^1,\dots,i^n} \left(\prod_{s=1}^n \Delta_{i_s}^s\right)^{\frac{1}{2}} \prod_{r=1}^n e^{\pi i \sigma^r \left(a_{i^{r+1}}^{r+1} - a_{i^r}^r\right)} \ell_{m^r} \left(a^r, a^{r+1}\right)_{i^r}^{i^{r+1}} \left(\prod_{s=1}^n \Delta_{i_s}^s\right)^{\frac{1}{2}}$
- ☑ Wilson-'t Hooft lines as transfer matrices

Wilson-'t Hooft line on $S^1 \times \mathbb{R}^3$ = Transfer matrix of trigonometric type

rac{2} Emergence of integrability from TQFT in extra dimensions Wilson-'t Hooft lines on $S^1 \times \mathbb{R}^3$ = Wilson lines in 4d CS