Toward simulating Superstring/M-theory

on a Quantum Computer
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QFT can be defined (or regularized) by using lattice.

olographic Principle

Quantum Gravity can be defined (or regularized)
by using QFT.

Quantum Gravity can be defined (or regularized)
by using lattice QFT.



The Large N Limit of Superconformal field
theories and supergravity

Juan Maldacena’i‘

Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA

By deriving various field theories from string theory and considering their large NV limit
we have shown that they contain in their Hilbert space excitations describing supergravity

on various spacetimes. We further conjectured that the field theories are dual to the full

quantum M /string theory on various spacetimes. In principle, we can use this duality to

give a definition of M /string theory on flat spacetime as (a region of) the large IV limit of

the field theories. Notice that this is a non-perturbative proposal for defining such theories,

since the corresponding field theories can, in principle, be defined non-perturbatively. We

Quantum Gravity can be defined (or regularized)

by using lattice QFT.



What kind of QFT?

* (p+1)-d Super Yang-Mills, p=0,1,2,3
* 6d Super-Conformal Theory

e 3d Super-Conformal Theory (ABJM)

Lattice regularization is not easy!

(Known solution only for SYM with p=0,1,2)



Why difficult”

* Exact symmetries at regularized level are needed.

e Otherwise (usually) wrong continuum limit is obtained,
due to the radiative corrections.

* Not easy to keep big enough supersymmetry.



Wilson’s lattice gauge theory
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‘Exact’ symmetries

® (Gauge symmetry

Uz — Qz)U, 20z + )’
® 90 degree rotation
® discrete translation

® Charge conjugation, parity

These symmetries exist at discretized level.



‘No-Go’ for lattice SYM

SUSY algebra contains infinitesimal translation.

{@.Q}~0

Infinitesimal translation is broken on lattice by
construction.

Impossible to keep all SUSY on lattice. Radiative
corrections spoil SUSY.

Still it is possible to preserve a part of
supercharges, though. (subalgebra which does

not contain 0)



° ° [ 9
Avoiding ‘No Go
(Kaplan-Katz-Unsal 2002, Sugino 2003, Catterall 2003, ...)

Keep a few supercharges exact on lattice.

Use it (and other discrete symmetries) to
forbid SUSY breaking radiative corrections.

Only “extended” SUSY can be realized for a
technical reason.

Works for (0+1)-, (I1+1)- and (2+1)-d SYM.

Euclidean simulations are successful so far.




Quantum Gravity on a quantum device!

® Real-time features.
Formation and evaporation of black hole?
Graviton scattering?

® Direct access to quantum states.
Emergent geometry?

® No sign problem.

But it is (at least) as hard as Euclidean lattice.



Simulation on Quantum Computer

2011EEEVNIIL )7,
- 2

In the 1deal world:
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® Direct access to big Hilbert space (qubits).

® Any unitary time evolution can be programmed.

In the real world: [EPZET TN €8

® How can we program the theory?

® How big resources?

® Fine tuning?



QFT on quantum computer

(assuming we have an actual qguantum computer)

® Construct lattice Hamiltonian H.

O(Z) = P
® Truncate the Hilbert space to finite dimension.
balda) = dalda) = daldy) = 67 10%) (i=1,---,A)

e Hilbert space cutoff A — o0
then lattice spacing a — 0

Lattice may work but surely complicated.
Any alternative”



[f you want to make a simulation of nature,

you'd better make it quantum mechanical.

VRichard P. Feynman

Nature i1s a guantum computer.

If you realize a QFT as a part of nature,
nature takes care of the simulation.

(~Hamiltonian engineering)



‘Nature’ (some guantum mechanical system)



What if this can easily be realized

v

‘Nature’ (some guantum mechanical system)



What if this can easily be realized

'

‘Nature’ (some guantum mechanical system)

while those are hard on lattice?



Build the nature (e.g. supersymmetric matrix model) first.

A Lisve o v, Ko, Moo W kg ¢ 5
H=Td =(P)? -2 X, X;P+ X2+ X2+ 20X X. X
> igrv g ? 50 g A 5
+gwﬂpapq [Xza wlq] _ iepq¢Tng?J[Xa7 ¢qu] + §€pq¢lp(gaT)IJ[Xaa ¢Jq]
K oittey] X, P] = ih
g, | +4¢ %’} BMN matrix moael X, P

(Berenstein, Maldacena, Nastase, 2002)

Then prepare appropriate states.

Some supersymmetric backgrounds of plane-wave matrix model

— 3d SYM (any N), 4d SYM (N=o0),
od superconformal theory (any N)

(Maldacena, Sheikh-Jabbari, Van Raamsdonk 2002,
Asano, Ishiki, Shimasaki, Terashima 2017,

Other matrix models Ishii, Ishiki, Shimasaki, Tsuchiya 2008, ....)
— SUSY QCD, QCD on noncommutative space, ...



)
A sy o v, Ko, Woo W kg ¢ 5
H=Tr{ =(P})? —Z[ X, X+ =X?>+ X2+ ZZVFX. X. X

f iqrv g 5 g g 5
_I_g,wTIpo.pq [Xza ¢Iq] _ §qu¢Tng1}J[Xaa wTJq] + §€pq¢lp(gaT)IJ[Xaa ¢Jq]
+gw@z@} X, P = ih
Hamiltonian = harmonic oscillators + some interactions
Standard Fock basis truncation is good enough

Truncated Hamiltonian = > (product of Paull matrices) "/M,\'Ifm'

— efficient guantum algorithms can be used.

Gauss law is imposed when the states are prepared.

Or perhaps the singlet constraint is not important. (Non-singlets are heavy.)

Maldacena-Milekhin 2018; Berkowitz-MH-Rinaldi-Vranas 2018
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gauge field gaugino

4d 'minimal’ super Yang-Mills Auzo 1.9.3, Wa=1.2.3.4
_ 2 gt .

L TI‘(FW + Yy D) Dy =0, —i|A, Y]

10d 'minimal’ & 'maximal’ super Yang-Mills

_ 2 N7 'maximal’ because
£ =W, + D,

dimensional
reduction Auzo,l,z,--- .99 %:1,2,... ,16
v
4d 'maximal’ super Yang-Mills
‘ Au:o,1,2,3(330, e 75179) — Au:0,1,2,3($0, L1, X2, 5153)
dlmenSIQnaI Ap=15,-9(Zo, "+ ,Tg) = Xi=12,.. 6(T0, T1, T2, T3)
reduction
l ¢a:1,2,---,16($0, e 7559) — 1%:1,2,---,16(51307 e 75133)

1d 'maximal’ super Yang-Mills = BFSS matrix model

Ao(t), X1=12,- 9(t), Ya=12, 16()



10d 'minimal’ & 'maximal’ super Yang-Mills

dimensional
reduction

l

4d 'maximal’ super Yang-Mills

A—012. .9, Va=12..16

1d 'maximal’ super Yang-Mills = BFSS matrix model

Ao(t), X1=12, 9(t), Ya=1,2, 16(%)
F,=0A —0A,—iA, A

— a()X] — 5’]14() — i[AO,XI] — 8()X] — i[AO,X[] — D()XI
0 Xy — 8, X — il X1, X = —i[ X1, X)]



4d 'maximal’ super Yang-Mills

on R1.3 on RxS8 , 1

radius ~ =

| | W

dimensional dimensional
reduction reduction
BFSS matrix model BMN matrix model
. 1 o 1 7 92 o 19 7
L — TI' §(DtX]) —|— §\If Dt\Ij —|— Z[X],XJ] — 5\11 ")/][X[, \IJ]

2 2

B ox2 B ox2 E‘I’T’h%qj u;,geiijinXk}

18 " 72 % 8

,J=1,...,9; 1,],k=1,2,3; a=4,...,9



BFSS = BMN @ p=0

’

X
Ko
|

\ y12 X 22

X11 X2
\/ X13
X33

location of I-th D-brane

XMl open strings connecting i-th and |-th D-branes.
large value — a lot of strings are excited

(Witten, 1994)



4

/

diagonal elements = particles (D-branes)
off-diagonal elements = open strings

¥

(Witten, 1994)

black hole = bound state of D-branes and strings

Energy (mass) of BH = energy in matrix model

Check it by lattice simulation.



Energy (mass) of BH = energy in matrix model /

large-N
continuum L& _MCSMC Continuum, Large-N Extrapolation
B MCSMC (7.4+0.5)T%%-(9.742.2)T*°+(5.6+1.8) T°°

B K&K  7.41T°°-(9.0£2.6)T"
B HHNT  7.417%%-(5.55+0.07) T*°8+0-3

finite-N, not continuum

M.H. et al. 2008
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,,,,, Kadoh-Kamata, 2015
0.0 0.2 0.4 0.6 0.8 1.0
Evan Berkowitz l . T >
strong coupling weak coupling

Enrico Rinaldi
(pre-beard period)

Monte Carlo String/M-theory Collaboration, 2016
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BMN has multiple supersymmetric vacua.

M2/D2-brane, M5/NS5-brane,

Various QFT's appear in appropriate large-N [imits

‘Lattice” Is embedded In matrices.

Fuzzy sphere’

Xi =

Py x,=0. A =0, U=0
39

J;, J;] = i€ T, (SU(2) algebra)

Ditferent reducible representation
= different vacuum

1
X; = J (i=1,2,3)

i3 +1)

3 N 9
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Spin 250 (501 points) 7

(Azeyanagi-MH-Hirata-Shimada, 2009)



‘Nature’ (BMN matrix model)

QFT B
(repr. B)

QFT A
(repr. A)
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1 1
L = Tr{2(DtX]) + Q\PTDt\IJ‘i_ A [X[,XJ] — S\IIT’)/[[X[,\I]]

2
B oo w? > Hor UG i
—— X - =X —=VU U — —e”" X, X; X

18" 72 % 8 123 3 ° k}’

(modulo some field redefinitions)

: 1 a g’ W W Y ik o 9
H = Tr =(P))? — Z-[X;, X ,? X? X2+ DLk x X X
{2( )" X Xl g Xy Xa b et X

“iIp gty 51 9. o 9 pgi o tIp,)
+gpMPol [ X, ] — §6pq¢”p8‘b [Xa, ™) + §€pq’¢zp(gﬂ N X e Yaq) + gw”p wzp}
Free part (bosonic/termionic harmonic oscillators)

Gauge-singlet constraint (A,=0 gauge)

Gulphys) =0 with G, = Z fopy (Z XPPY + ZZ¢TIP5¢7)

B,y=1



18 72 3

N 1 - A A A
H= ’IY{§(PI)2 _ gZ[XI, X2+ X2 + X2 Y ik %% X,
rp it 21 9. _ 9 - g
+g¢TIpo'pq[Xz’7 ¢Iq] T iepqwupg‘[lj [Xaa ¢TJq] + §€pq¢1p(gaT)IJ[Xaa qu] + %wﬂpwlp}

Free part (bosonic/fermionic harmonic oscillators)

Xr= ZXI Tay YIp = Z@%M Toiy T8l = 1 fapyTy, Tr(TaTs) = dup

N T P, N i, _ )5 forI=1,23

AIa ?XIa /—2w1 ’ AIa - 7XIC¥ o /2wI’ I {% for I = 4,5,---,9
Alnre A

|{nla}> ®I a|nIa H \/7% |VACfree>7 A[a|VACfree> = 0.

Reqgularization: 0 <n;, <A -1

(No regularization needed for fermions)



A—-2

Vi+ 15+ 1]

7=0

7) = |bo) |b1) - .. |br—1)
b,b'=0o0r1

54+ 1) = b)) [B) .. b1 )

7+ 1)1 = @ (1) (i) K=loga/

12_0z 12+0z
0)(0] = D){1l| =
o0 = =27, =22
O, + 10 O, — 10
o1 =T o = T



H = >(Pauli strings)

A—2
a' =Y i+ 1+ 1)
§=0

~2K=A Pauli strings of length K=log2/\ for each |
=) ~/\2 Pauli strings of length K=logz/\

N2
ZTY[XLXJ]Z - Z Z faﬂafvan?XgX}ng
I#J I#J a,8,7,p,0=1 o
~N4 color combinations

~/N\8N4 Pauli strings of length 4K

- ON? 8N?
dim (HemN) ‘regularized = A" -2 (~N4 nonzero components/row)

L
H = Zaiﬂia L < ASN*
i=1
Pauli strings



How big A”?

* Depend on the physics under consideration.

* A=2 can be already good for some interesting phenomena.

e.qg., Deconfinement transition (black hole formation) at weak coupling

each matrix entry = harmonic oscillator

excitation level = # of strings

< > average excitation level < 1




Quantum Signal Processing(1)

Low-Chuang 2017; Babbush-Berry-Neven 2018

e (Calculate time evolution efficiently using the Pauli-string form.
* Nice & cool math!

Bessel tnc. of 1st kind Chebyshev polynomial of the first kind

Jacobi-Anger expansion / T (z) = cos(nt),

r = cost

L
H = Zaif{i, Controlled-Pauli U i) [¢) = |i) (ﬂi |¢>)
=1

ancilla states

§=(<G|®f)l7(|0>®f) |G>=igi|z'>, |gi|2:%7 A:ZO""



Quantum Signal Processing(2)

Low-Chuang 2017; Babbush-Berry-Neven 2018

L
I — Zaiﬂi7 Bessel fnc. of Tstkina Chebyshev polynomial of the first kind
/ \ / T, (x) = cos(nt), x = cost
—th n I:I
= Jo(~=Xt) +2 3 i (— xT()\)
n=1
0 [i) ) = i) (11 [4)) R=2|G) (G| —
Unitary & Hermitian
W = RU telhiadre :Tn(x)

Unitary




Quantum Signal Processing(3)

Low-Chuang 2017; Babbush-Berry-Neven 2018

— (G| RU (2\G>( | 1) OW™1|G)

= 2(G| RU |G) (G| UW™ ' |G) — (G| RU*W™ " |G)
Gh=C—_ 5@ RU|G) (G| RUW™|G) — (G 0*W"|G)
Y

G| W |G) (GIWW™|G) — (G| W™ [G)

il (E —Tn_1(5) G|0% = (@]
assumption for / )‘

mathematical induction H
— n—+1 ( /Tnﬂ(x) = 22T, (z) — Th1(7)

|
T
3



Quantum Signal Processing(4)

Low-Chuang 2017; Babbush-Berry-Neven 2018

e = (G (Jo( At) +QZ i" T (=N )W >|G> (Gl f(W)|G)

n=1

We want to construct this unitary operator efficiently.

| emma

2x2 special unitary matrix V' (8) = A(6)1 +iB(#)o, +iC(#)o, + iD(6)o,
with period 2m (V(8) = V(0 + 27) ) can be approximated as

A

V(0) = Ry, (0)Rg,_,(6) - - Ry, (6)

. | | -
where @1, -+ ,¢0n € R & Ry(0) = o~ 1505 p =100z ,+i5 o

|

(use classical computer to find these coefficients)



Quantum Signal Processing(5)

Low-Chuang 2017; Babbush-Berry-Neven 2018

2x2 special unitary matrix V() = A(6)1 + iB(#)o, + iC(6)o, + iD(6)a,
~ Ry, (0)Ry,_,(0) - - Ry, (0)

eigenvalue eigenstate

unitary / \ /

Wlw) = wlw) = ¥ |w)
Controlled-W gate
CW:|0) ® [w) = w™t|0) [w),  |1)® |w) s wl) @ |w)

CW: [0)® [¢) = [0) @ (W),  |1)® [4) = [1) @ (W [))




Quantum Signal Processing(6)

Low-Chuang 2017; Babbush-Berry-Neven 2018

2x2 special unitary matrix V() = A(6)1 + iB(#)o, + iC(6)o, + iD(6)a,
~ Ry, (0)Ry,_,(0) - - Ry, (0)

A



* The same Hamiltonian + fuzzy sphere state = QFT

e State preparation is bit complicated but doable.
(Please see the paper.)
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Some of you may not like string theory so much.

How about (3+1)-d U(k) YM?

Welcome,
to the real world.

: ¥
Y MATFRIX '

e Kogut-Susskind Hamiltonian Formulation is commonly used.

 We will provide another option.



Kogut-Susskind Formulation
H = Hg + Hp

P 7%% (Ea )2 unitary, compact variable
T 9 L L L 70

n p=1 a=1

\I

3 h T T
HB zag > > (k Ir (UM nUV n+“U/,L n—i—uUl/ n) )
N UFEV
[Eﬁna ﬁu,ﬁ’] — agéuuéﬁﬁ’Ta 01/,77’7 [E/(jna UT :| — _agéuuéﬁﬁ’ U’iﬁ' To

H = Quitpus = Qi (Or BT |R, i), 5)

Complicated group theory. Not straightforward on QC.



Orbifold lattice construction

Matrix Model is easy partly because the variables are
noncompact (~harmonic oscillators).

Orbifold construction (kaplan, Katz, Unsal 2002) §IVES
lattice gauge theory with noncompact variables.

Orbifold-projected matrix model kapian, Katz, Unsal 2002)
+ dimensional deconstruction (arkani-Hamed, Cohen, Georgi 2001)

Original motivation was to build supersymmetric
lattices, but it works without SUSY as well.



Example: (3+1)-d U(k) YM

(almost) Kaplan-Katz-Unsal 2002

Ltee = ZTT<|Dt$ﬁ|2 + |Deyi|® + | Dyzal*

2
Y14

| 2
2

7% — Tr-sTr—s + Yala — Yn—gYa—y + 2rZn — Zin—3%m—3

—2974 (|27Yire — Ya®isg|” + |Yazirg — za¥arz]” + |2aTars — Taziss| ) )

m? 1 |? 2 1 |?
lattice — - _ =
ALalce=—2— Tala — 553 | T|Yala T 553 | % T 555
a = T a~914 a~914q
1 a®/2g14s1 1a®/2g1q A
r = e 91481, grads
V2ag14
y = 1 €a5/291d82 eia5/291dz42
)
V2ag14
P L a®/2g1qs3 e’ia5/291dz43 .

e
\@agld



Example: (3+1)-d U(k) YM

(almost) Kaplan-Katz-Unsal 2002

1 1 :
L = /d?’xTr (_ZF’EV + i(Dt51)2 + %[517 3J]2>

m2

AL = Y d>zTr (sf + 55 + sg)
T = 1 6a5/291d31 e’ia5/291dA1,
V2ag14
y = 1 €a5/291d82 eia5/291dA2
Y
V2ag14
P L a5/2g1q4s3 eia5/2gldA3.

e
\/§a91d



Example: (3+1)-d U(k) YM

(almost) Kaplan-Katz-Unsal 2002

a=3 Tr(uam,ﬁﬁ + Byal? + Bl

2

g]_d A o Lol A A fal fal A A 2 2 A 2
+5 [#5%5 — TaaBiz + Jala — Ya-gl—g + 2aZs — Zn-s2a—s|
12914 (|5’7ﬁyﬁ+x — Yalargl” + |Ualarg — Zalare|” + |Zalars — TaZiral ) T

2
+

1
2a%g7

Jiiln —




e Hamiltonian = harmonic oscillators + some interactions

e Standard Fock basis truncation is good enough

* Truncated Hamiltonian = > (product of Pauli matrices)

— efficient quantum algorithms can be used.

* (Gauss law is imposed when the states are prepared.

Essentially the same as the matrix model.

MATRIX



Orbifold construction
VS
Kogut-Susskind formulation

Orbifold lattice has simpler Hamiltonian made of Pauli matrices.
Truncation to gauge-invariant sector — not easy but not impossible in both.
State preparation — more or less the same level of hardness?

Orbifold lattice is better when we want SUSY — potential application to
guantum gravity via holography.

We don’t know which is more economical in terms of the number of qubits.

Probably we should study both, and choose a better approach depending
on a concrete problem we want to solve.



Short Summary

String/M-theory, Yang-Mills, maybe also QCD
--- Simpler than expected.

Standard quantum algorithms can be applied.
Interesting to think about efficient simulation protocols.

What would be the simplest model to simulate? (Various
possibilities which | couldn't mention today)



