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What kind of QFT? 
• (p+1)-d Super Yang-Mills, p=0,1,2,3   

• 6d Super-Conformal Theory 

• 3d Super-Conformal Theory (ABJM)

Lattice regularization is not easy!

(Known solution only for SYM with p=0,1,2)



Why difficult? 

• Exact symmetries at regularized level are needed. 

• Otherwise (usually) wrong continuum limit is obtained, 
due to the radiative corrections. 

• Not easy to keep big enough supersymmetry.



Wilson’s lattice gauge theory
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‘Exact’ symmetries

• Gauge symmetry

• 90 degree rotation

• discrete translation

• Charge conjugation, parity

These symmetries exist at discretized level.



‘No-Go’ for lattice SYM

• SUSY algebra contains infinitesimal translation. 

• Infinitesimal translation is broken on lattice by 
construction.

• Impossible to keep all SUSY on lattice. Radiative 
corrections spoil SUSY. 

• Still it is possible to preserve a part of 
supercharges, though. (subalgebra which does 
not contain ∂)



Avoiding ‘No Go’ 

 

• Keep a few supercharges exact on lattice.

• Use it (and other discrete symmetries) to 
forbid SUSY breaking radiative corrections.  

• Only “extended” SUSY can be realized for a 
technical reason.  

• Works for (0+1)-, (1+1)- and (2+1)-d SYM. 

• Euclidean simulations are successful so far. 

(Kaplan-Katz-Unsal 2002, Sugino 2003, Catterall 2003, ...)



Quantum Gravity on a quantum device? 

• Real-time features.                         
Formation and evaporation of black hole? 
Graviton scattering?  

• Direct access to quantum states.         
Emergent geometry?  

• No sign problem. 

But it is (at least) as hard as Euclidean lattice.



Simulation on Quantum Computer

• Direct access to big Hilbert space (qubits). 

• Any unitary time evolution can be programmed. 

• How can we program the theory?  

• How big resources?  

• Fine tuning? 

In the ideal world:

In the real world:



QFT on quantum computer

• Construct lattice Hamiltonian    .  

• Truncate the Hilbert space to finite dimension. 

• Hilbert space cutoff                                          
then lattice spacing 

(assuming we have an actual quantum computer)

Lattice may work but surely complicated.
Any alternative? 



If you want to make a simulation of nature,  
you’d better make it quantum mechanical. 

Nature is a quantum computer.

If you realize a QFT as a part of nature,  
nature takes care of the simulation.

(~Hamiltonian engineering)



‘Nature’ (some quantum mechanical system)

QFT A

QFT B

QFT C
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What if this can easily be realized



‘Nature’ (some quantum mechanical system)

QFT A

QFT B

QFT C

while those are hard on lattice?

What if this can easily be realized



 Build the nature (e.g. supersymmetric matrix model) first.

BMN matrix model
(Berenstein, Maldacena, Nastase, 2002)

Some supersymmetric backgrounds of plane-wave matrix model

3d SYM (any N), 4d SYM (N=∞),  
      6d superconformal theory (any N)

Other matrix models  
        →  SUSY QCD, QCD on noncommutative space, … 

(Maldacena, Sheikh-Jabbari, Van Raamsdonk 2002,  
Asano, Ishiki, Shimasaki, Terashima 2017, 
Ishii, Ishiki, Shimasaki, Tsuchiya 2008, ….)

 Then prepare appropriate states. 



• Hamiltonian = harmonic oscillators + some interactions 

• Standard Fock basis truncation is good enough 

• Truncated Hamiltonian = Σ (product of Pauli matrices)

→ efficient quantum algorithms can be used.
• Gauss law is imposed when the states are prepared. 

• Or perhaps the singlet constraint is not important. (Non-singlets are heavy.)
Maldacena-Milekhin 2018; Berkowitz-MH-Rinaldi-Vranas 2018
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4d 'minimal' super Yang-Mills

10d 'minimal' & 'maximal' super Yang-Mills

4d 'maximal' super Yang-Mills

1d 'maximal' super Yang-Mills = BFSS matrix model

gauge field gaugino

dimensional  
reduction

dimensional  
reduction

'maximal' because  
More SUSY → spin > 1



10d 'minimal' & 'maximal' super Yang-Mills

dimensional  
reduction

1d 'maximal' super Yang-Mills = BFSS matrix model

4d 'maximal' super Yang-Mills



4d 'maximal' super Yang-Mills

dimensional  
reduction

BFSS matrix model

on R1,3 on R×S3

dimensional  
reduction

BMN matrix model

I,J=1,...,9; i,j,k=1,2,3; a=4,...,9 



XM =

location of i-th D-brane

XMij : open strings connecting i-th and j-th D-branes. 
large value → a lot of strings are excited

(X1ii,X2ii,…,X6ii)

X11

X22

X33

X12

X13

X23

(Witten, 1994)

BFSS = BMN @ μ=0



diagonal elements = particles (D-branes) 
off-diagonal elements = open strings 

(Witten, 1994)

N

N

black hole = bound state of D-branes and strings

Energy (mass) of BH = energy in matrix model
Check it by lattice simulation.
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Monte Carlo String/M-theory Collaboration, 2016

large-N 
continuum

finite-N, not continuum
SUGRA

M.H. et al, 2008

Kadoh-Kamata, 2015

Energy (mass) of BH = energy in matrix model ✔

Enrico Rinaldi 
(pre-beard period)

Evan Berkowitz
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• BMN has multiple supersymmetric vacua. 

• M2/D2-brane, M5/NS5-brane, .... 

• Various QFT's appear in appropriate large-N limits 

• "Lattice" is embedded in matrices. 

Spin 250 (501 points)

3
is maximized

(Azeyanagi-MH-Hirata-Shimada, 2009)

'Fuzzy sphere'

(SU(2) algebra)

Different reducible representation  
= different vacuum



‘Nature’ (BMN matrix model)

QFT A 
(repr. A)

QFT B 
(repr. B)

QFT C 
(repr. C)
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(modulo some field redefinitions)

Free part (bosonic/fermionic harmonic oscillators)

Gauge-singlet constraint (A0=0 gauge)



Free part (bosonic/fermionic harmonic oscillators)

Fock basis

Regularization:
(No regularization needed for fermions)



b, b’ = 0 or 1

K=log2Λ



H = Σ(Pauli strings)

～2K=Λ Pauli strings of length K=log2Λ for each j 

～Λ8N4 Pauli strings of length 4K

～Λ2 Pauli strings of length K=log2Λ 

Pauli strings

～N4 color combinations

(~N4 nonzero components/row)



How big Λ?
• Depend on the physics under consideration. 

• Λ=2 can be already good for some interesting phenomena.

e.g., Deconfinement transition (black hole formation) at weak coupling

N

N

each matrix entry = harmonic oscillator 

excitation level = # of strings

average excitation level < 1



Quantum Signal Processing(1)

• Calculate time evolution efficiently using the Pauli-string form. 
• Nice & cool math! 

Low-Chuang 2017; Babbush-Berry-Neven 2018

Jacobi-Anger expansion
Bessel fnc. of 1st kind Chebyshev polynomial of the first kind

ancilla states

Controlled-Pauli



Quantum Signal Processing(2)
Low-Chuang 2017; Babbush-Berry-Neven 2018

Bessel fnc. of 1st kind Chebyshev polynomial of the first kind

Unitary & Hermitian

Unitary



Quantum Signal Processing(3)
Low-Chuang 2017; Babbush-Berry-Neven 2018

assumption for 
mathematical induction



Quantum Signal Processing(4)
Low-Chuang 2017; Babbush-Berry-Neven 2018

We want to construct this unitary operator efficiently.

Lemma
2×2 special unitary matrix

with period 2π (                            ) can be approximated as

where &

(use classical computer to find these coefficients)



Quantum Signal Processing(5)
Low-Chuang 2017; Babbush-Berry-Neven 2018

2×2 special unitary matrix

unitary
eigenvalue eigenstate

Controlled-W gate

Hadamard gate



Quantum Signal Processing(6)
Low-Chuang 2017; Babbush-Berry-Neven 2018

2×2 special unitary matrix



• The same Hamiltonian + fuzzy sphere state → QFT 

• State preparation is bit complicated but doable. 
(Please see the paper.)
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Some of you may not like string theory so much.

Welcome,  
to the real world.

How about (3+1)-d U(k) YM?

• Kogut-Susskind Hamiltonian Formulation is commonly used. 

• We will provide another option. 



Kogut-Susskind Formulation 

Complicated group theory. Not straightforward on QC.

unitary, compact variable



Orbifold lattice construction
• Matrix Model is easy partly because the variables are 

noncompact (~harmonic oscillators). 

• Orbifold construction (Kaplan, Katz, Unsal 2002) gives             
lattice gauge theory with noncompact variables. 

• Orbifold-projected matrix model (Kaplan, Katz, Unsal 2002)            
+ dimensional deconstruction (Arkani-Hamed, Cohen, Georgi  2001) 

• Original motivation was to build supersymmetric 
lattices, but it works without SUSY as well. 



Example: (3+1)-d U(k) YM
(almost) Kaplan-Katz-Unsal 2002
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• Hamiltonian = harmonic oscillators + some interactions 

• Standard Fock basis truncation is good enough 

• Truncated Hamiltonian = Σ (product of Pauli matrices)

→ efficient quantum algorithms can be used.

• Gauss law is imposed when the states are prepared.

Essentially the same as the matrix model.



Orbifold construction  
vs  

Kogut-Susskind formulation
• Orbifold lattice has simpler Hamiltonian made of Pauli matrices. 

• Truncation to gauge-invariant sector — not easy but not impossible in both. 

• State preparation — more or less the same level of hardness? 

• Orbifold lattice is better when we want SUSY  → potential application to 
quantum gravity via holography. 

• We don’t know which is more economical in terms of the number of qubits. 

• Probably we should study both, and choose a better approach depending 
on a concrete problem we want to solve.



Short Summary

• String/M-theory, Yang-Mills, maybe also QCD                           
--- Simpler than expected. 

• Standard quantum algorithms can be applied. 

•  Interesting to think about efficient simulation protocols.  

• What would be the simplest model to simulate? (Various 
possibilities which I couldn't mention today)


