Toward simulating Superstring/M-theory on a Quantum Computer

Masanori Hanada

University of Surrey

with Alex Buser, Hrant Gharibyan, Junyu Liu (Caltech), Masazumi Honda (Kyoto)

Gharibyan-MH-Honda-Liu, to appear (1st part) Buser-Gharibyan-MH-Honda-Liu, to appear (2nd part)

Oct. 23, 2020, (virtually) @RIKEN

- Introduction
- BMN matrix model
- QFT from BMN matrix model
- Quantum simulation of BMN matrix model and QFT
- Orbifold lattice construction

QFT can be defined (or regularized) by using lattice.

Holographic Principle

Quantum Gravity can be defined (or regularized) by using QFT.

Quantum Gravity can be defined (or regularized) by using lattice QFT.

The Large N Limit of Superconformal field theories and supergravity

Juan Maldacena¹

Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA

By deriving various field theories from string theory and considering their large N limit we have shown that they contain in their Hilbert space excitations describing supergravity on various spacetimes. We further conjectured that the field theories are dual to the full quantum M/string theory on various spacetimes. In principle, we can use this duality to give a definition of M/string theory on flat spacetime as (a region of) the large N limit of the field theories. Notice that this is a non-perturbative proposal for defining such theories, since the corresponding field theories can, *in principle*, be defined non-perturbatively. We

Quantum Gravity can be defined (or regularized) by using lattice QFT.

What kind of QFT?

- (p+1)-d Super Yang-Mills, p=0,1,2,3
- 6d Super-Conformal Theory
- 3d Super-Conformal Theory (ABJM)

Lattice regularization is not easy!

(Known solution only for SYM with p=0,1,2)

Why difficult?

- Exact symmetries at regularized level are needed.
- Otherwise (usually) wrong continuum limit is obtained, due to the radiative corrections.
- Not easy to keep big enough supersymmetry.

'Exact' symmetries

• Gauge symmetry

$$U_{\mu,\vec{x}} \to \Omega(x) U_{\mu,\vec{x}} \Omega(x+\hat{\mu})^{\dagger}$$

- 90 degree rotation
- discrete translation
- Charge conjugation, parity

These symmetries exist at discretized level.

'No-Go' for lattice SYM

- SUSY algebra contains infinitesimal translation. $\{Q,\bar{Q}\}\sim\partial$
- Infinitesimal translation is broken on lattice by construction.
- Impossible to keep all SUSY on lattice. Radiative corrections spoil SUSY.
- Still it is possible to preserve a part of supercharges, though. (subalgebra which does not contain ∂)

Avoiding 'No Go'

(Kaplan-Katz-Unsal 2002, Sugino 2003, Catterall 2003, ...)

- Keep a few supercharges exact on lattice.
- Use it (and other discrete symmetries) to forbid SUSY breaking radiative corrections.
- Only "extended" SUSY can be realized for a technical reason.
- Works for (0+1)-, (1+1)- and (2+1)-d SYM.
- Euclidean simulations are successful so far.

Quantum Gravity on a quantum device?

- Real-time features.
 Formation and evaporation of black hole?
 Graviton scattering?
- Direct access to quantum states. Emergent geometry?
- No sign problem.

But it is (at least) as hard as Euclidean lattice.

Simulation on Quantum Computer

In the ideal world:

- Direct access to big Hilbert space (qubits).
- Any unitary time evolution can be programmed.

In the real world:

- How can we program the theory?
- How big resources?
- Fine tuning?

QFT on quantum computer

(assuming we have an actual quantum computer)

- Construct lattice Hamiltonian \hat{H} . $\phi(\vec{x}) \rightarrow \hat{\phi}_{\vec{n}}$
- Truncate the Hilbert space to finite dimension. $\hat{\phi}_{\vec{n}} |\phi_{\vec{n}}\rangle = \phi_{\vec{n}} |\phi_{\vec{n}}\rangle \rightarrow \hat{\phi}_{\vec{n}} |\phi_{\vec{n}}^{(i)}\rangle = \phi_{\vec{n}}^{(i)} |\phi_{\vec{n}}^{(i)}\rangle \quad (i = 1, \cdots, \Lambda)$
- Hilbert space cutoff $\Lambda \to \infty$ then lattice spacing $a \to 0$

Lattice may work but surely complicated.

Any alternative?

If you want to make a simulation of nature, you'd better make it quantum mechanical.

Nature is a quantum computer.

If you realize a QFT as a part of nature, nature takes care of the simulation.

(~Hamiltonian engineering)

Build the nature (e.g. supersymmetric matrix model) first.

$$\hat{H} = \text{Tr} \left\{ \frac{1}{2} (\hat{P}_{I})^{2} - \frac{g^{2}}{4} [\hat{X}_{I}, \hat{X}_{J}]^{2} + \frac{\mu^{2}}{18} \hat{X}_{i}^{2} + \frac{\mu^{2}}{72} \hat{X}_{a}^{2} + \frac{i\mu g}{3} \epsilon^{ijk} \hat{X}_{i} \hat{X}_{j} \hat{X}_{k} \right. \\ \left. + g \hat{\psi}^{\dagger Ip} \sigma_{p}^{iq} [\hat{X}_{i}, \hat{\psi}_{Iq}] - \frac{g}{2} \epsilon_{pq} \hat{\psi}^{\dagger Ip} g_{IJ}^{a} [\hat{X}_{a}, \hat{\psi}^{\dagger Jq}] + \frac{g}{2} \epsilon^{pq} \hat{\psi}_{Ip} (g^{a\dagger})^{IJ} [\hat{X}_{a}, \hat{\psi}_{Jq}] \right. \\ \left. + \frac{\mu}{4} \hat{\psi}^{\dagger Ip} \hat{\psi}_{Ip} \right\} \qquad \text{BMN matrix model}_{(\text{Berenstein, Maldacena, Nastase, 2002)}$$

Then prepare appropriate states.

Some supersymmetric backgrounds of plane-wave matrix model

(Maldacena, Sheikh-Jabbari, Van Raamsdonk 2002, Asano, Ishiki, Shimasaki, Terashima 2017, Ishii, Ishiki, Shimasaki, Tsuchiya 2008,)

Other matrix models

→ SUSY QCD, QCD on noncommutative space, ...

$$\hat{H} = \operatorname{Tr} \left\{ \frac{1}{2} (\hat{P}_{I})^{2} - \frac{g^{2}}{4} [\hat{X}_{I}, \hat{X}_{J}]^{2} + \frac{\mu^{2}}{18} \hat{X}_{i}^{2} + \frac{\mu^{2}}{72} \hat{X}_{a}^{2} + \frac{i\mu g}{3} \epsilon^{ijk} \hat{X}_{i} \hat{X}_{j} \hat{X}_{k} \right. \\ \left. + g \hat{\psi}^{\dagger I p} \sigma_{p}^{i \, q} [\hat{X}_{i}, \hat{\psi}_{I q}] - \frac{g}{2} \epsilon_{pq} \hat{\psi}^{\dagger I p} g_{IJ}^{a} [\hat{X}_{a}, \hat{\psi}^{\dagger J q}] + \frac{g}{2} \epsilon^{pq} \hat{\psi}_{I p} (g^{a\dagger})^{IJ} [\hat{X}_{a}, \hat{\psi}_{J q}] \right. \\ \left. + \frac{\mu}{4} \hat{\psi}^{\dagger I p} \hat{\psi}_{I p} \right\} \left[\hat{X}_{i}, \hat{P} \right] = i\hbar$$

- Hamiltonian = harmonic oscillators + some interactions
- Standard Fock basis truncation is good enough
- Truncated Hamiltonian = Σ (product of Pauli matrices)

 \rightarrow efficient quantum algorithms can be used.

- Gauss law is imposed when the states are prepared.
- Or perhaps the singlet constraint is not important. (Non-singlets are heavy.)

Maldacena-Milekhin 2018; Berkowitz-MH-Rinaldi-Vranas 2018

- Introduction
- BMN matrix model
- QFT from BMN matrix model
- Quantum simulation of BMN matrix model and QFT
- Orbifold lattice construction

4d 'minimal' super Yang-Mills $A_{\mu=0,1,2,3}, \psi_{\alpha=1,2,3,4}$ $\mathcal{L} = \text{Tr}(F_{\mu\nu}^2 + \psi \gamma^{\mu} D_{\mu} \psi)$ $D_{\mu}\psi = \partial_{\mu}\psi - i[A_{\mu},\psi]$ 10d 'minimal' & 'maximal' super Yang-Mills $\mathcal{L} = \text{Tr}(F_{\mu\nu}^2 + \bar{\psi}\gamma^{\mu}D_{\mu}\psi)$ 'maximal' because More SUSY \rightarrow spin > 1 dimensional $A_{\mu=0.1.2,\dots,9}, \psi_{\alpha=1,2,\dots,16}$ reduction 4d 'maximal' super Yang-Mills $A_{\mu=0,1,2,3}(x_0,\cdots,x_9) \to A_{\mu=0,1,2,3}(x_0,x_1,x_2,x_3)$ dimensional $A_{\mu=4,5,\cdots,9}(x_0,\cdots,x_9) \to X_{I=1,2,\cdots,6}(x_0,x_1,x_2,x_3)$ reduction $\psi_{\alpha=1,2,\dots,16}(x_0,\dots,x_9) \to \psi_{\alpha=1,2,\dots,16}(x_0,\dots,x_3)$ 1d 'maximal' super Yang-Mills = BFSS matrix model $A_0(t), X_{I=1,2,\dots,9}(t), \psi_{\alpha=1,2,\dots,16}(t)$

gauge field

gaugino

10d 'minimal' & 'maximal' super Yang-Mills dimensional $A_{\mu=0,1,2,\cdots,9}, \psi_{\alpha=1,2,\cdots,16}$ reduction 4d 'maximal' super Yang-Mills 1d 'maximal' super Yang-Mills = BFSS matrix model $A_0(t), X_{I=1.2....9}(t), \psi_{\alpha=1,2,...,16}(t)$ $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - i[A_{\mu}, A_{\nu}]$ $\rightarrow \partial_0 X_I - \partial_I A_0 - i[A_0, X_I] = \partial_0 X_I - i[A_0, X_I] = D_0 X_I$ $\partial_I X_J - \partial_J X_I - i[X_I, X_J] = -i[X_I, X_J]$

$$L = \operatorname{Tr} \left\{ \frac{1}{2} (D_t X_I)^2 + \frac{1}{2} \Psi^T D_t \Psi + \frac{g^2}{4} [X_I, X_J]^2 - \frac{ig}{2} \Psi^T \gamma_I [X_I, \Psi] - \frac{\mu^2}{18} X_i^2 - \frac{\mu^2}{72} X_a^2 - \frac{\mu}{8} \Psi^T \gamma_{123} \Psi - \frac{i\mu g}{3} \epsilon^{ijk} X_i X_j X_k \right\}$$

I,J=1,...,9; i,j,k=1,2,3; a=4,...,9

 $X_{M^{ij}}$: open strings connecting i-th and j-th D-branes. large value \rightarrow a lot of strings are excited

(Witten, 1994)

diagonal elements = particles (D-branes) off-diagonal elements = open strings

(Witten, 1994)

black hole = bound state of D-branes and strings

Energy (mass) of BH = energy in matrix model

Check it by lattice simulation.

Energy (mass) of BH = energy in matrix model

Monte Carlo String/M-theory Collaboration, 2016

- Introduction
- BMN matrix model
- QFT from BMN matrix model
- Quantum simulation of BMN matrix model and QFT
- Orbifold lattice construction

- BMN has multiple supersymmetric vacua.
- M2/D2-brane, M5/NS5-brane,
- Various QFT's appear in appropriate large-N limits
- "Lattice" is embedded in matrices.

Fuzzy sphere'

$$X_{i} = \frac{\mu}{3g}J_{i}, \qquad X_{a} = 0, \qquad A_{t} = 0, \qquad \Psi = 0 \qquad \sum_{\mu=1}^{3}\sum_{i=1}^{N}\left[\left(UX_{\mu}U^{\dagger}\right)_{ii}\right]^{2} \text{ is maximized}$$

$$[J_{i}, J_{j}] = i\epsilon^{ijk}J_{k} \qquad (SU(2) \text{ algebra}) \qquad \qquad \int_{\mu=1}^{3}\sum_{i=1}^{N}\left[\left(UX_{\mu}U^{\dagger}\right)_{ii}\right]^{2} \text{ of } \int_{\mu=1}^{3}\sum_{i=1}^{3}\left[\left(UX_{\mu}U^{\dagger}\right)_{ii}\right]^{2} \text{ of } \int_{\mu=1}^{3}\sum_{i=1}^{3}\sum_{i=1}^{3}\left[\left(UX_{\mu}U^{\dagger}\right)_{ii}\right]^{2} \text{ of } \int_{$$

Different reducible representation = different vacuum

- Introduction
- BMN matrix model
- QFT from BMN matrix model
- Quantum simulation of BMN matrix model and QFT
- Orbifold lattice construction

$$L = \operatorname{Tr} \left\{ \frac{1}{2} (D_t X_I)^2 + \frac{1}{2} \Psi^T D_t \Psi + \frac{g^2}{4} [X_I, X_J]^2 - \frac{ig}{2} \Psi^T \gamma_I [X_I, \Psi] - \frac{\mu^2}{18} X_i^2 - \frac{\mu^2}{72} X_a^2 - \frac{\mu}{8} \Psi^T \gamma_{123} \Psi - \frac{i\mu g}{3} \epsilon^{ijk} X_i X_j X_k \right\},$$

(modulo some field redefinitions)

$$\begin{split} \hat{H} &= \operatorname{Tr} \left\{ \frac{1}{2} (\hat{P}_{I})^{2} - \frac{g^{2}}{4} [\hat{X}_{I}, \hat{X}_{J}]^{2} + \frac{\mu^{2}}{18} \hat{X}_{i}^{2} + \frac{\mu^{2}}{72} \hat{X}_{a}^{2} + \frac{i\mu g}{3} \epsilon^{ijk} \hat{X}_{i} \hat{X}_{j} \hat{X}_{k} \right. \\ &+ g \hat{\psi}^{\dagger I p} \sigma_{p}^{i \, q} [\hat{X}_{i}, \hat{\psi}_{I q}] - \frac{g}{2} \epsilon_{pq} \hat{\psi}^{\dagger I p} g_{IJ}^{a} [\hat{X}_{a}, \hat{\psi}^{\dagger J q}] + \frac{g}{2} \epsilon^{pq} \hat{\psi}_{I p} (g^{a\dagger})^{IJ} [\hat{X}_{a}, \hat{\psi}_{J q}] + \frac{\mu}{4} \hat{\psi}^{\dagger I p} \hat{\psi}_{I p} \right\} \end{split}$$

Free part (bosonic/fermionic harmonic oscillators)

Gauge-singlet constraint (A₀=0 gauge)

$$\hat{G}_{\alpha}|\text{phys}\rangle = 0 \quad \text{with} \quad \hat{G}_{\alpha} \equiv \sum_{\beta,\gamma=1}^{N^2} f_{\alpha\beta\gamma} \left(\sum_{I=1}^9 \hat{X}_I^{\beta} \hat{P}_I^{\gamma} + i \sum_{I,p} \hat{\psi}^{\dagger I p \beta} \hat{\psi}_{I p}^{\gamma} \right)$$

$$\begin{split} \hat{H} &= \operatorname{Tr} \left\{ \frac{1}{2} (\hat{P}_{I})^{2} - \frac{g^{2}}{4} [\hat{X}_{I}, \hat{X}_{J}]^{2} + \frac{\mu^{2}}{18} \hat{X}_{i}^{2} + \frac{\mu^{2}}{72} \hat{X}_{a}^{2} + \frac{i\mu g}{3} \epsilon^{ijk} \hat{X}_{i} \hat{X}_{j} \hat{X}_{k} \right. \\ &\left. + g \hat{\psi}^{\dagger I p} \sigma_{p}^{i \, q} [\hat{X}_{i}, \hat{\psi}_{I q}] - \frac{g}{2} \epsilon_{pq} \hat{\psi}^{\dagger I p} g_{IJ}^{a} [\hat{X}_{a}, \hat{\psi}^{\dagger J q}] + \frac{g}{2} \epsilon^{pq} \hat{\psi}_{I p} (g^{a\dagger})^{IJ} [\hat{X}_{a}, \hat{\psi}_{J q}] + \frac{\mu}{4} \hat{\psi}^{\dagger I p} \hat{\psi}_{I p} \right\} \end{split}$$

Free part (bosonic/fermionic harmonic oscillators)

Fock basis

$$X_{I} = \sum_{\alpha=1}^{N^{2}} X_{I}^{\alpha} \tau_{\alpha}, \quad \psi_{Ip} = \sum_{\alpha=1}^{N^{2}} \psi_{Ip}^{\alpha} \tau_{\alpha} \qquad [\tau_{\alpha}, \tau_{\beta}] = i f_{\alpha\beta\gamma} \tau_{\gamma}, \quad \operatorname{Tr}(\tau_{\alpha} \tau_{\beta}) = \delta_{\alpha\beta}$$

$$\hat{A}_{I\alpha} = \sqrt{\frac{\omega_I}{2}} \hat{X}_{I\alpha} + \frac{i\hat{P}_{I\alpha}}{\sqrt{2\omega_I}} , \qquad \hat{A}_{I\alpha}^{\dagger} = \sqrt{\frac{\omega_I}{2}} \hat{X}_{I\alpha} - \frac{i\hat{P}_{I\alpha}}{\sqrt{2\omega_I}}, \qquad \omega_I = \begin{cases} \frac{\mu}{3} & \text{for } I = 1, 2, 3\\ \frac{\mu}{6} & \text{for } I = 4, 5, \cdots, 9 \end{cases}$$

$$|\{n_{I\alpha}\}\rangle \equiv \otimes_{I,\alpha} |n_{I\alpha}\rangle_{I\alpha} = \left(\prod_{I,\alpha} \frac{\hat{A}_{I\alpha}^{\dagger n_{I\alpha}}}{\sqrt{n_{I\alpha}!}}\right) |\text{VAC}_{\text{free}}\rangle, \qquad \hat{A}_{I\alpha} |\text{VAC}_{\text{free}}\rangle = 0.$$

Regularization: $0 \le n_{I\alpha} \le \Lambda - 1_{I\alpha}$

(No regularization needed for fermions)

$$\hat{a}^{\dagger} = \sum_{j=0}^{\Lambda-2} \sqrt{j+1} |j+1\rangle \langle j|$$

$$\begin{split} |j\rangle &= |b_0\rangle \, |b_1\rangle \dots |b_{K-1}\rangle \\ |j+1\rangle &= |b_0'\rangle \, |b_1'\rangle \dots |b_{K-1}'\rangle \end{split}$$

$$|j+1\rangle\langle j| = \otimes_{l=0}^{K-1} (|b_l'\rangle\langle b_l|) \qquad K = \log_2 \Lambda$$

$$\begin{split} |0\rangle\langle 0| &= \frac{\mathbf{1}_2 - \sigma_z}{2}, \qquad |1\rangle\langle 1| = \frac{\mathbf{1}_2 + \sigma_z}{2}, \\ |0\rangle\langle 1| &= \frac{\sigma_x + i\sigma_y}{2}, \qquad |1\rangle\langle 0| = \frac{\sigma_x - i\sigma_y}{2}. \end{split}$$

$H = \Sigma(Pauli strings)$

$$\hat{a}^{\dagger} = \sum_{j=0}^{\Lambda-2} \sqrt{j+1} |j+1\rangle \langle j|$$

 $\sim 2^{K} = \Lambda$ Pauli strings of length K=log₂ Λ for each j

 $\rightarrow \sim \Lambda^2$ Pauli strings of length K=log₂ Λ

$$\sum_{I \neq J} \operatorname{Tr}[\hat{X}_{I}, \hat{X}_{J}]^{2} = -\sum_{I \neq J} \sum_{\alpha, \beta, \gamma, \rho, \sigma=1}^{N^{2}} f_{\alpha\beta\sigma} f_{\gamma\rho\sigma} \hat{X}_{I}^{\alpha} \hat{X}_{J}^{\beta} \hat{X}_{I}^{\gamma} \hat{X}_{J}^{\rho}$$

~N⁴ color combinations
~N⁸N⁴ Pauli strings of length 4K

 $\dim \left(\mathcal{H}_{BMN} \right) |_{\text{regularized}} = \Lambda^{9N^2} \cdot 2^{8N^2} \quad (\sim N^4 \text{ nonzero components/row})$

$$\hat{H} = \sum_{i=1}^{L} \alpha_i \hat{\Pi}_i, \qquad L \lesssim \Lambda^8 N^4$$
Pauli strings

How big Λ ?

- Depend on the physics under consideration.
- Λ =2 can be already good for some interesting phenomena.

e.g., Deconfinement transition (black hole formation) at weak coupling

each matrix entry = harmonic oscillator

excitation level = # of strings

average excitation level < 1

Quantum Signal Processing(1)

- Calculate time evolution efficiently using the Pauli-string form.
- Nice & cool math!

$$\hat{H} = \sum_{i=1}^{L} \alpha_i \hat{\Pi}_i, \qquad \text{Controlled-Pauli} \ \hat{U} \ket{i} \ket{\psi} = \ket{i} \left(\hat{\Pi}_i \ket{\psi} \right)$$

$$\frac{\hat{H}}{\lambda} = \left(\langle G | \otimes \hat{I} \right) \hat{U} \left(|G\rangle \otimes \hat{I} \right) \qquad \qquad |G\rangle = \sum_{i=1}^{L} g_i |i\rangle, \qquad |g_i|^2 = \frac{\alpha_i}{\lambda}, \qquad \lambda = \sum_{i=1}^{L} \alpha_i$$

Quantum Signal Processing(2)

$$\hat{U} \ket{i} \ket{\psi} = \ket{i} \left(\hat{\Pi}_i \ket{\psi} \right) \qquad \qquad \hat{R} = 2 \ket{G} \left\langle G \right| - \hat{I}$$
Unitary & Hermitian

$$\hat{W} = \hat{R}\hat{U} \qquad \langle G | \hat{W}^n | G \rangle = T_n \left(\frac{\hat{H}}{\lambda}\right)$$
Unitary

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$

Quantum Signal Processing(3)

$$\begin{split} \overbrace{T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)}^{\hat{W} = \hat{R}\hat{U}} \\ & \langle G | \ \hat{W}^{n+1} | G \rangle = \langle G | \ \hat{R}\hat{U}\hat{R}\hat{U}\hat{W}^{n-1} | G \rangle \\ & = \langle G | \ \hat{R}\hat{U} \left(2 | G \rangle \langle G | - \hat{I} \right) \hat{U}\hat{W}^{n-1} | G \rangle \\ & = 2 \langle G | \ \hat{R}\hat{U} | G \rangle \langle G | \ \hat{U}\hat{W}^{n-1} | G \rangle - \langle G | \ \hat{R}\hat{U}^2\hat{W}^{n-1} | G \rangle \\ & \langle G | \ \hat{R} = \langle G | \ & = 2 \langle G | \ \hat{R}\hat{U} | G \rangle \langle G | \ \hat{R}\hat{U}\hat{W}^{n-1} | G \rangle - \langle G | \ \hat{U}^2\hat{W}^{n-1} | G \rangle \\ & = 2 \langle G | \ \hat{R}\hat{U} | G \rangle \langle G | \ \hat{R}\hat{U}\hat{W}^{n-1} | G \rangle - \langle G | \ \hat{U}^2\hat{W}^{n-1} | G \rangle \\ & = 2 \langle G | \ \hat{W} | G \rangle \langle G | \ \hat{W}\hat{W}^{n-1} | G \rangle - \langle G | \ \hat{W}^{n-1} | G \rangle \downarrow \\ & = 2 \langle G | \ \hat{W} | G \rangle \langle G | \ \hat{W}\hat{W}^{n-1} | G \rangle - \langle G | \ \hat{W}^{n-1} | G \rangle \downarrow \\ & = 2 \langle G | \ \hat{W} | G \rangle \langle G | \ \hat{W}\hat{W}^{n-1} | G \rangle - \langle G | \ \hat{W}^{n-1} | G \rangle \downarrow \\ & = 2 \frac{\hat{H}}{\lambda} T_n \left(\frac{\hat{H}}{\lambda} \right) - T_{n-1} \left(\frac{\hat{H}}{\lambda} \right) \\ & = T_{n+1} \left(\frac{\hat{H}}{\lambda} \right). \quad \int_{T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)} \end{split}$$

Quantum Signal Processing(4)

Low-Chuang 2017; Babbush-Berry-Neven 2018

$$e^{-i\hat{H}t} = \langle G | \left(J_0(-\lambda t) + 2\sum_{n=1}^{\infty} i^n J_n(-\lambda t)\hat{W}^n \right) | G \rangle \equiv \langle G | f(\hat{W}) | G \rangle$$

We want to construct this unitary operator efficiently.

<u>Lemma</u>

2×2 special unitary matrix $\hat{V}(\theta) = A(\theta)\mathbf{1} + iB(\theta)\sigma_z + iC(\theta)\sigma_x + iD(\theta)\sigma_y$ with period $2\pi (\hat{V}(\theta) = \hat{V}(\theta + 2\pi))$ can be approximated as

$$\begin{split} \hat{V}(\theta) \simeq \hat{R}_{\phi_n}(\theta) \hat{R}_{\phi_{n-1}}(\theta) \cdots \hat{R}_{\phi_1}(\theta) \\ \text{where } \phi_1, \cdots, \phi_n \in \mathbb{R} \& \hat{R}_{\phi}(\theta) = e^{-i\frac{\phi}{2}\sigma_z} e^{-i\theta\sigma_x} e^{+i\frac{\phi}{2}\sigma_z} \\ & \uparrow \\ \text{(use classical computer to find these coefficients)} \end{split}$$

Quantum Signal Processing(5)

Low-Chuang 2017; Babbush-Berry-Neven 2018

2×2 special unitary matrix
$$\hat{V}(\theta) = A(\theta)\mathbf{1} + iB(\theta)\sigma_z + iC(\theta)\sigma_x + iD(\theta)\sigma_y$$

 $\simeq \hat{R}_{\phi_n}(\theta)\hat{R}_{\phi_{n-1}}(\theta)\cdots\hat{R}_{\phi_1}(\theta)$

Controlled-W gate

 $\widehat{\mathrm{CW}}: |0\rangle \otimes |w\rangle \mapsto w^{-1} |0\rangle |w\rangle, \qquad |1\rangle \otimes |w\rangle \mapsto w |1\rangle \otimes |w\rangle$

 $\widehat{\mathrm{CW}}: |0\rangle \otimes |\psi\rangle \mapsto |0\rangle \otimes (\widehat{W}^{-1} |\psi\rangle), \qquad |1\rangle \otimes |\psi\rangle \mapsto |1\rangle \otimes (\widehat{W} |\psi\rangle)$

$$\widehat{R}_{\phi} \equiv e^{-i\frac{\phi}{2}\sigma_{z}} \cdot \widehat{\text{Had}} \cdot \widehat{\text{CW}} \cdot \widehat{\text{Had}} \cdot e^{+i\frac{\phi}{2}\sigma_{z}}$$
 Hadamard gate

$$\widehat{R}_{\phi}(|b\rangle \otimes |w = e^{i\theta}\rangle) = (\widehat{R}_{\phi}(\theta) |b\rangle) \otimes |w = e^{i\theta}\rangle$$

$$\text{Hadamard gate}$$

$$\widehat{R}_{\phi}(|b\rangle \otimes |w = e^{i\theta}\rangle) = (\widehat{R}_{\phi}(\theta) |b\rangle) \otimes |w = e^{i\theta}\rangle$$

Quantum Signal Processing(6)

2×2 special unitary matrix
$$\hat{V}(\theta) = A(\theta)\mathbf{1} + iB(\theta)\sigma_z + iC(\theta)\sigma_x + iD(\theta)\sigma_y$$

 $\simeq \hat{R}_{\phi_n}(\theta)\hat{R}_{\phi_{n-1}}(\theta)\cdots\hat{R}_{\phi_1}(\theta)$
 $\hat{R}_{\phi} \equiv e^{-i\frac{\phi}{2}\sigma_z}\cdot\widehat{\text{Had}}\cdot\widehat{\text{CW}}\cdot\widehat{\text{Had}}\cdot e^{+i\frac{\phi}{2}\sigma_z}$
 $\hat{R}_{\phi}(|b\rangle \otimes |w = e^{i\theta}\rangle) = (\hat{R}_{\phi}(\theta) |b\rangle) \otimes |w = e^{i\theta}\rangle$
 $\hat{V} \equiv \langle b = 0 | \hat{R}_{\phi_n}\hat{R}_{\phi_n-1}\cdots\hat{R}_{\phi_1} | b = 0\rangle$
 $\hat{V} : |w\rangle \mapsto f(w) |w\rangle$
 $\hat{V} = f(\hat{W})$

- The same Hamiltonian + fuzzy sphere state \rightarrow QFT
- State preparation is bit complicated but doable. (Please see the paper.)

- Introduction
- BMN matrix model
- QFT from BMN matrix model
- Quantum simulation of BMN matrix model and QFT
- Orbifold lattice construction

Some of you may not like string theory so much.

How about (3+1)-d U(k) YM?

- Kogut-Susskind Hamiltonian Formulation is commonly used.
- We will provide another option.

Kogut-Susskind Formulation

$$\hat{H} = \hat{H}_{\rm E} + \hat{H}_{\rm B}$$

Complicated group theory. Not straightforward on QC.

Orbifold lattice construction

- Matrix Model is easy partly because the variables are noncompact (~harmonic oscillators).
- Orbifold construction (Kaplan, Katz, Unsal 2002) gives lattice gauge theory with noncompact variables.
- Orbifold-projected matrix model (Kaplan, Katz, Unsal 2002)
 + dimensional deconstruction (Arkani-Hamed, Cohen, Georgi 2001)
- Original motivation was to build supersymmetric lattices, but it works without SUSY as well.

Example: (3+1)-d U(k) YM

(almost) Kaplan-Katz-Unsal 2002

$$L^{\text{lattice}} = \sum_{\vec{n}} \text{Tr} \left(|D_t x_{\vec{n}}|^2 + |D_t y_{\vec{n}}|^2 + |D_t z_{\vec{n}}|^2 - \frac{g_{1\text{d}}^2}{2} |x_{\vec{n}} \bar{x}_{\vec{n}} - \bar{x}_{\vec{n}-\hat{x}} x_{\vec{n}-\hat{x}} + y_{\vec{n}} \bar{y}_{\vec{n}} - \bar{y}_{\vec{n}-\hat{y}} y_{\vec{n}-\hat{y}} + z_{\vec{n}} \bar{z}_{\vec{n}} - \bar{z}_{\vec{n}-\hat{z}} z_{\vec{n}-\hat{z}}|^2 - 2g_{1\text{d}}^2 (|x_{\vec{n}} y_{\vec{n}+\hat{x}} - y_{\vec{n}} x_{\vec{n}+\hat{y}}|^2 + |y_{\vec{n}} z_{\vec{n}+\hat{y}} - z_{\vec{n}} y_{\vec{n}+\hat{z}}|^2 + |z_{\vec{n}} x_{\vec{n}+\hat{z}} - x_{\vec{n}} z_{\vec{n}+\hat{x}}|^2) \right)$$

$$\Delta L^{\text{lattice}} \equiv -\frac{m^2}{2a} \sum_{\vec{n}} \left(\left| x_{\vec{n}} \bar{x}_{\vec{n}} - \frac{1}{2a^2 g_{1\text{d}}^2} \right|^2 + \left| y_{\vec{n}} \bar{y}_{\vec{n}} - \frac{1}{2a^2 g_{1\text{d}}^2} \right|^2 + \left| z_{\vec{n}} \bar{z}_{\vec{n}} - \frac{1}{2a^2 g_{1\text{d}}^2} \right|^2 \right)$$

$$\begin{aligned} x &= \frac{1}{\sqrt{2}ag_{1d}}e^{a^{5/2}g_{1d}s_1}e^{ia^{5/2}g_{1d}A_1}, \\ y &= \frac{1}{\sqrt{2}ag_{1d}}e^{a^{5/2}g_{1d}s_2}e^{ia^{5/2}g_{1d}A_2}, \\ z &= \frac{1}{\sqrt{2}ag_{1d}}e^{a^{5/2}g_{1d}s_3}e^{ia^{5/2}g_{1d}A_3}. \end{aligned}$$

Example: (3+1)-d U(k) YM

(almost) Kaplan-Katz-Unsal 2002

$$L = \int d^3 x \operatorname{Tr} \left(-\frac{1}{4} F_{\mu\nu}^2 + \frac{1}{2} (D_t s_I)^2 + \frac{g_{4d}^2}{4} [s_I, s_J]^2 \right)$$

$$\Delta L = -\frac{m^2}{2} \int d^3 x \operatorname{Tr} \left(s_1^2 + s_2^2 + s_3^2 \right)$$

$$\begin{aligned} x &= \frac{1}{\sqrt{2}ag_{1d}}e^{a^{5/2}g_{1d}s_1}e^{ia^{5/2}g_{1d}A_1}, \\ y &= \frac{1}{\sqrt{2}ag_{1d}}e^{a^{5/2}g_{1d}s_2}e^{ia^{5/2}g_{1d}A_2}, \\ z &= \frac{1}{\sqrt{2}ag_{1d}}e^{a^{5/2}g_{1d}s_3}e^{ia^{5/2}g_{1d}A_3}. \end{aligned}$$

Example: (3+1)-d U(k) YM

(almost) Kaplan-Katz-Unsal 2002

$$\begin{split} \hat{H} &= \sum_{\vec{n}} \operatorname{Tr} \left(|\hat{p}_{x,\vec{n}}|^2 + |\hat{p}_{y,\vec{n}}|^2 + |\hat{p}_{z,\vec{n}}|^2 \\ &+ \frac{g_{1\mathrm{d}}^2}{2} \left| \hat{x}_{\vec{n}} \hat{x}_{\vec{n}} - \hat{x}_{\vec{n}-\hat{x}} \hat{x}_{\vec{n}-\hat{x}} + \hat{y}_{\vec{n}} \hat{y}_{\vec{n}} - \hat{y}_{\vec{n}-\hat{y}} \hat{y}_{\vec{n}-\hat{y}} + \hat{z}_{\vec{n}} \hat{z}_{\vec{n}} - \hat{z}_{\vec{n}-\hat{z}} \hat{z}_{\vec{n}-\hat{z}} \right|^2 \\ &+ 2g_{1\mathrm{d}}^2 \left(|\hat{x}_{\vec{n}} \hat{y}_{\vec{n}+\hat{x}} - \hat{y}_{\vec{n}} \hat{x}_{\vec{n}+\hat{y}}|^2 + |\hat{y}_{\vec{n}} \hat{z}_{\vec{n}+\hat{y}} - \hat{z}_{\vec{n}} \hat{y}_{\vec{n}+\hat{z}} \right|^2 + |\hat{z}_{\vec{n}} \hat{x}_{\vec{n}+\hat{z}} - \hat{x}_{\vec{n}} \hat{z}_{\vec{n}+\hat{x}} \right|^2 \right) \bigg) + \Delta \hat{H} \end{split}$$

$$\Delta \hat{H} \equiv \frac{m^2}{2a} \sum_{\vec{n}} \operatorname{Tr} \left(\left| \hat{x}_{\vec{n}} \hat{\bar{x}}_{\vec{n}} - \frac{1}{2a^2 g_{1d}^2} \right|^2 + \left| \hat{y}_{\vec{n}} \hat{\bar{y}}_{\vec{n}} - \frac{1}{2a^2 g_{1d}^2} \right|^2 + \left| \hat{z}_{\vec{n}} \hat{\bar{z}}_{\vec{n}} - \frac{1}{2a^2 g_{1d}^2} \right|^2 \right)$$

$$[\hat{x}_{\mu\vec{n},pq},\hat{\bar{p}}_{\nu\vec{n}',rs}] = i\delta_{\mu\nu}\delta_{\vec{n}\vec{n}'}\delta_{ps}\delta_{qr}$$

$$[\hat{x}, \hat{p}] = [\hat{\bar{x}}, \hat{\bar{p}}] = [\hat{x}, \hat{x}] = [\hat{\bar{x}}, \hat{\bar{x}}] = [\hat{p}, \hat{p}] = [\hat{\bar{p}}, \hat{\bar{p}}] = 0$$

- Hamiltonian = harmonic oscillators + some interactions
- Standard Fock basis truncation is good enough
- Truncated Hamiltonian = Σ (product of Pauli matrices)
 - \rightarrow efficient quantum algorithms can be used.
- Gauss law is imposed when the states are prepared.

Essentially the same as the matrix model.

Orbifold construction vs Kogut-Susskind formulation

- Orbifold lattice has simpler Hamiltonian made of Pauli matrices.
- Truncation to gauge-invariant sector not easy but not impossible in both.
- State preparation more or less the same level of hardness?
- Orbifold lattice is better when we want SUSY → potential application to quantum gravity via holography.
- We don't know which is more economical in terms of the number of qubits.
- Probably we should study both, and choose a better approach depending on a concrete problem we want to solve.

Short Summary

- String/M-theory, Yang-Mills, maybe also QCD
 --- Simpler than expected.
- Standard quantum algorithms can be applied.
- Interesting to think about efficient simulation protocols.
- What would be the simplest model to simulate? (Various possibilities which I couldn't mention today)