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KPZ equation Kardar, Parisi & Zhang, PRL (1986)
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describes growth of d-dimensional surface h(t, r)

e v :constantforce (removedby h — h + vt )

e v :diffusion

e 7 : white Gaussian noise with zero mean
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)\ :nhonlinearity
from geometric effect

Takeuchi, Physica A (2018)



K PZ eq uation Kardar, Parisi & Zhang, PRL (1986)
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Roughness of surface is described by
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e X :roughness exponent

Surface is rough for x > 0 and smooth for x <0
e z :dynamical exponent

Exact valuesin1Dare x=1/2 & z=3/2

Huge development in theory, exp. & math in 1D
Sasamoto & Spohn (2010); Takeuchi & Sano (2010); Hairer (2013); ...



KPZ in higer dimensions

e Ford <2, )\ isrelevant

e Ford>2, )\ isirrelevant
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surface is rough

surface is smooth

Tang,
Nattermann
& Forrest
PRL (1990)



KPZ in higer dimensions
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e Ford<2, )\ isrelevant surface is rough
e Ford>2, )\ isirrelevant surface is smooth

With increasing )\, there is a phase transition from
smooth to rough phases, at which x =0 &{(z = 2

Roughening transition  Non-relativistic

?
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Plan of this talk

- KPZ equation
mapping implication
attractive bosons Efimov effect
(2)
RG analysis

Ref: Y. Nanakaya & Y. Nishida, arXiv:2010.15161
“Efimov effect at the Kardar-Parisi-Zhang roughening transition”



Plan of this talk

KPZ equation

(1)
mapping

attractive bosons

Ref: Y. Nanakaya & Y. Nishida, arXiv:2010.15161
“Efimov effect at the Kardar-Parisi-Zhang roughening transition”



Field theoretical formation

Solve KPZ eq for a given 7] h., Martin, Siggia
& Rose (1973)
Ensemble average Janssen (1976)

De Dominicis (1976)
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Field theoretical formation
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Attractive bosons with a delta-potential !

( attraction of bosons ~ nonlinearity of KPZ)

e Bethe ansatz in 1D allows exact analyses
Kardar (1987); Calabrese, Le Doussal & Rosso (2010); Dotsenko (2010); ...

 Delta-potential for d 2 2 requires regularization
(e.g. sharp momentum cutoff [p] < A)

Continuum limit recovered @ critical point



Plan of this talk

attractive bosons Efimov effect
(2)
RG analysis

Ref: Y. Nanakaya & Y. Nishida, arXiv:2010.15161
“Efimov effect at the Kardar-Parisi-Zhang roughening transition”



RG of 2-boson coupling
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RG of 2-boson coupling

Beta function for 2 < d < 4 has two fixed points

D32 g3
A—2 = (d — 2)§
55 )92 (47)4/2T(d/2)
. > g2
0 g3 = (d — 2)(4m)¥?T'(d/2)

With increasing g2, there is a binding transition
from unbound to bound bosons




RG of 2-boson coupling

Beta function for 2 < d < 4 has two fixed points

D32 g3
A—2 = (d — 2)§
55 )92 (47)4/2T(d/2)
. > g2
0 g3 = (d — 2)(4m)¥?T'(d/2)

With increasing g2, there is a binding transition
from unbound to bound bosons

KPZ roughening transition
2-boson scattering amplitude at the critical point
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Interim summary

Attractive bosons KPZ equation
 unbound bosons e smooth surface
binding transition roughening transition
* bound bosons  rough surface

The critical point is described by non-relativistic CFT
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This is the end of story,
if all higher-order terms are irrelevant

However, for bosons at the critical point in 3D,
3-boson coupling is relevant, leading to Efimov effect



RG of 3-boson coupling
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3-boson scattering amplitude ( §z(A) = A*%g3/(9g5))
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RG of 3-boson coupling
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* Ford<2.30&3.76 <d,

IR fixed point exists and

the critical point is still
described by NRCFT

* For2.30<d<3.76,

Fixed points disappear
and scale inv. is lost

1 — sptan(sgIln A/A,)
1+ sgtan(sgln A/A.,)

gz — C

Discrete scale invariance
A—e NN (neT)



Efimov effect Efimov, PLB (1970); NPA (1973)

For 3 bosons at the critical point in 3D,
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scale invariant under z = 2 is broken by running of g3
down to discrete scale invariance with e™/%° x~ 22.7

This discrete scale invariance survives for 4 bosons,
but unestablished for more bosons Deltuva (2010-2013)

e |f all higher-order terms are irrelevant,
DSI persists for any number of bosons

e |f some higher-order term is relevant,
no scale invariance remains
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KPZ equation
(3)

" implication

Efimov effect

Ref: Y. Nanakaya & Y. Nishida, arXiv:2010.15161
“Efimov effect at the Kardar-Parisi-Zhang roughening transition”



Our prediction

Roughening transition governed by KPZ equation

Binding transition of bosons Efimov effect

Because full scale invariance under z = 2 is lost,

([h(t,7) — h(0,0)]?) ~ r2xF<i>

,r.z
with x =0 & z =2 is no longer expected

but some unusual behavior is expected to emerge
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Our prediction

e |f discrete scale invariance persists
(1n(t:7) = O D) ~ fuolin (A1) F (- )
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DSl under ¥ — (22.7)"F, t— (22.7)°™t

Efimov effect emerges at KPZ roughening transition !

e If no scale invariance remains

Discontinuous (1st-order) transition

Our prediction is speculative, which should be
proven/disproven by numerical simulations
or more rigorous mathematical approaches



