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Motivation

What is energy or energy density in curved spacetime ?

Why do we care Flow equation

AdS

* Black hole in AdS ?

AdS/CFT from boundary QFT CFT

CFT@ finite T

arXiv:2004.03779, S. Aoki, T. Onogi, S. Yokoyama
“ What does a quantum black hole look like ?”

massless free scalar @ finite T * Black hole-like object + matter in AdS

d=4

TO
energy distribution on
curved spacetime ?
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O. Energy in general relativity



(Conserved) energy in general relativity

. . . 1 5Smatter
Einstein equation RW — QQWR Ag/u/ — SWGdTW Tuw () = g ()
gravity matter
Bianchi identity

conservation V"1, =0 but what we need for a conservationis 0"1}, # 0

rewrite

o {\/ 9| (T, + tuy)} =0 Einstein’s pseudo-tensor

gravitational energy 7

This method works only for asymptotically flat A =0, T, — 0 (r — o)
in Cartesian coordinate (not in polar coordinate)
for two or more particles

¢, 1s not covariant under general coordinate transformation.

violate the fundamental principle of general relativity !



Arnowitt-Deser-Misner (ADM) energy

Quasi-local energy

Komar energy, Bondi energy
Hamiltonian with Gibbons-Hawking term

E = / dV (local energy) E = / dS (quasi-local energy)
r— 00

cf. Gauss’s law in electromagnetism  (Q = / dV Jy = / s, Fo*
|4 oV

ex. Komar energy Komar, PR127(1962) 1411

B C
B 167TGd

C
167TGd

E(¢) / d¥o V=gV, V" = / Ao, /=g V€M
%(xo) % (x0)

Quasi-local energy
Cc: some constant

This is a Noether charge of the 2nd type for a coordinate transformation &”.

2c
167Gy

For £&# = -6, Killing vector E =

/ d>0v/—g R%
¥ (zo)



However quasi-local energy cannot tell a distribution of energy.

Local energy must exist since quasi-local energy is derived from Iit.

@ local energy (mass) is a source which generates gravitational fields.

The covariant definition for local energy is a missing piece
In general relativity.

To give a precise and universal definition of energy by the volume integral
of local energy if exists and extend it to more general cases.

Part |. Conserved charges with symmetry (in the presence of Killing vector)

Energy.

Part ll. Conserved charges without symmetry

Generic conserved charge in GR. meaning ?



Part |.
Conserved charges
with symmetry

S. Aoki, T. Onogi and S. Yokoyama,
“Conserved charge in general relativity”,
arXiv:2005.13233[gr-qc]



Symmetry * Kllllng vector ['ﬁgm/ — v,uﬁl/ - vugu =0

* covariantly conserved vector current
1

vu(Tuvgy) — (VMTMV)éW + §TW(VM€V - Vufu) =0

conserved charge

scalar
) 0:/ d4z \g\VMJ“:/ %z 9, (M\g\J“) :/ ds,\/g] J*
M M oM

JH =TH &Y ,
S 1 Stokes’ theorem

V,JtH=——=0 JH
< B

oM
assume
e d¥.J* =0 on OM, * Q(th) — Q(Ztl)




ex. stationary space time —— Killing vector  &¥ = —§}

a metric g,,, does not contain !

conserved energy | F = — /
¥(zo)

Covariant and universal definition of total energy
works for an arbitrary asymptotic behavior in an any coordinate system.

works for dynamical as well as back ground metric.

cf. Quasi-local energy
M. Shibata, “Numerical relativity” (100 Years of General Relativity-Vol. 1, World Scientific)

ADM mass

The ADM mass is not defined in a covariant way,

For its definition to be valid, in addition to asymptotic flathess, the metric components have
to approach those of the flat Minkowski metric sufficiently quickly

A well-known example in which the ADM mass cannot be calculated is the metric of a four-
dimensional non-spinning black hole in Painleve-Gullstrand coordinate,

Komar mass

this term does not denote the mass of the black hole in general (e.qg., in the presence of a

tours surrounding the black hole).



Our definition has been known, but rarely used.

1. V. Fock, TheTheory of Space, Time and Gravitation (Pergamon Press, New York 1959)

The quantity I = T“ng —g dxridxodrs will be constant, -- -, if the vector
7
¢, satisfies the equation V, ¢, +V o, = 0.

2. A. Tautman, Kings Collage lecture notes on general relativity, mimeographed note
(unpublished), May-June 1958; Gen. Res. Grav. 34 (2002), 721-762, cited Fock.

3. A. Tautman’s lecture notes was cited by Komar in PRD127(1962)1411.

These were forgotten in major textbooks (e.g. Landau-Lifshitz) except a few.

4. R. Wald, General Relativity (The University of Chicago Press, Chicago, 1984), p.286,
footnote 3.

a Killing vector field £¢ is presented, - - -, V4(T3£%) = (VT )60 +T,, VEP = 0,
SO fz TopEPn® is conserved, i.e., independent of choice of Cauchy surface X.

measure term is not specified, though.

See also lecture notes by Blau; Shiromizu (Japanese); Sekiguchi (Japanese).

No applications. Let us consider some applications.



1. Black holes

S. Aoki, T. Onogi and S. Yokoyama,
“Conserved charge in general relativity”,
arXiv:2005.13233[gr-qc]



1-1. (charged) Schwarzschild black hole

metric  ds® = —(1 4+ u)(dz")? — 2udz dr + (1 — u)dr® + r*g;;dz' da’
—_—  (d-2)-sphere

Eddington-Finkelstein coordinate

u(r) = —:g_z + 7“2(2:) — d _22/)\(;_ D Q? = 871Gy (3 : 23 q°
Energy Momentum tensor
70, — (1655;(;23 87~(::§_Z<5u) _ T, = 16?@ &A:j_‘jéu) Su(r) = _Zé_z n ng:)
Energy of neutral black hole (Q=0) Killing ¢ = —d§
r “
E=— / T (d ;ai)c:Vj_Q /O e 0, (r3su(r) = |9 fé?gjrgg
- )

volume of (d-2)-sphere Vg2 := /dd_Qaﬁ v det g;;

This reproduces known results. For example E= % — M atd =4

2G4



Remark

2" = constant hypersurface is space-like even inside the horizon.

However the Killing vector becomes space-like inside the horizon.

The BH energy is independent of the cosmological constant.

EMT for black hole

(d — 2)7“8_3 o(r) - rg_g r5(1)(r)

T = 9"
167Gy rd—2 J

T =T", = —
0 T16mGy rd—2

See also Balasin-Nachbagauer, Class. Quant. Graf. 10(1993)2771.
Neutral black hole is NOT a vacuum solution to Einstein equation.

cf. Coulomb potential generated by a point charge is NOT a vacuum solution
to Maxwell equation.

VQ(T;B):O r#0 * V2<Td13)0<5("“)

Kerr BH See Balasin-Nachbagauer, Class. Quant. Graf. 11(1994)1453.




cf. Komar energy

AArd—1
(d—2)(d—-1)

c
167Gy

Exomar = (d — 3)743_3 _

_ . Vi—o
dd 2 — [0 ¢7] — 1 C
/Hoo TVIVIET = I T6n Gy

Komar energy for BH diverges for non-zero cosmological constant.

c(d — S)Vd_QTg_S (d— 2)Vd_2rg_3
Fxomar = tA=0 rr | E =
K 167TGd . ou esult 167TGd

* Both agree except d=3.

Our definition of energy is much more robust and universal.



Energy of charged black hole

_ @d=2)Vygo [T d—3 ry Q’
EQ = — 167TGd /0 dr 87~(7“ 5u) 5u(7°) — _7“d'—_3 + 7“2(d_3)
d—3)Vy_ > 2
— EO . ( 2) d 2/ d/r,ar (qu_?)) ﬁ OO
0

Energy of a charged black hole diverges at d > 3.
This corresponds to a divergent self-energy of a charged point particle
in the flat limit.
cf. Komar energy

c
167Gy

/ O d%0/—gV, V6" = Exomar (¢ = 0) + 0
E)

Failure of Stokes’ theorem

c
167Gy

/ dXok V _gv[Ofk] — EKomar(q — O)
03 (x9)



1-2. BTZ black hole

1
d=3 AdS ds® = —f(r dt? -
A
r2 J? J
f(?“)—ﬁ—m@(?“)+4—ﬂ, w(ff)zﬁ

Killing vectors & = —0h, &5 =0y

o(r)
EMT TV =
g 167TG37"

Energy

Angular momentum

(—méy + J&7)

27T
E=— d drT0, — "
/0 gb/w 0= 3G,

27
J J
Pﬁb — / d¢/ TdTTO¢ — S~ PKomar — C—
0

Bandaos-Teitelboim-Zanelli, PRL69(1992)1849.

dr® 4+ r?(d¢ — w(r)dt)?

L: AdS radius

Exomar = 00

8Gs 8Gs



2. Compact star

S. Aoki, T. Onogi and S. Yokoyama,
“Conserved charge in general relativity”,
arXiv:2005.13233[gr-qc]



Oppenheimer-Volkoff equation

stationary spherically symmetric metric Oppenheimer-Volkoff, PR55(1939)374.

ds® = —f(r)(dz”)? + h(r)dr® + r°g;;dz’dz’

with perfect fluid 7% = —p(r), T", = P(r), Ti=68.P(r)

Einstein equation * Oppenheimer-Volkoff equation

IP() GaM(r) pd—1 2\
- = j“d_Q (P(r) + p(r)) h(r) {d—3—|— (d —2)M (1) (87TP(T) B (d — 1)Gd>}
| I 2G4 M (r) 277
with O k= — 33 (d—2)(d—1)

M(r) = d8_7T2 /OT dss®%p(s), M(0)=0

EOS P =P(p) * solution to OV equation




Schwarzschild metric with m = M (R) gravitational mass

1 QGdM(R) 2A7“2

*
»
*
*
*
»
*
‘e
-

..... p— — k
f(r) rd—3 (d—2)(d—1)

*e
‘e
3

te
‘e
3

e Schwarzschild metric

outside star

r>R, p(r)=P(r)=0

radius of compact star R from P(r — R) — ()



Energy of a compact star

conserved energy  Killing vector &# = —§5

E—- [t / " drV/JgIT% = Vs / TR p(r)

. 8 1
gravitational mass M(R) = y WQ / dr @2 p(r)
o 0

extra factor +/f(r)h(r) #1 Schutz’s textbook (guess)
Angus-Cho-Park, Eur. Phys. JC 78 (2018)500 (calculation)

h(r) incorrect guess in Wald's textbook

dM(r) 8w 4
o a2 U

. _827)Tvd_2 M(R) — GgVa-2 /O dr \/ f(r)h3(r)rM(r) {p(r) + P(r)}

gravitational mass corrections due to a structure inside star := AE

E =



Physical meaning of AFE

R
0

gravitational interaction energy at d=4

N (o R
—% di 1z a1ty P(Z)pY) — —47TG4/ drr M(r)p(r)
0

U4 =

correction term represents the gravitational interaction energy !

c(d —3)Vy_
cf. Komar energy Exomar = ( 873 =2 M(R)

Komar energy misses the gravitational interaction energy.

Our definition is physically more sensible.



Size of gravitational interaction energy

constant density  po(r) = po d=4,A=0,k=0

3 . 9GM
Mgy = 4”@ PO fixed * R > Rinin = — ol

(R 3
P o[ i (5] el

interaction energy ~ —68% of Mgy at R = Ruin

A total energy is 1/3 of the observed mass.

Gravitational interaction energy could be large !

A neutron star may have a much smaller total energy than the observed mass.

A maximum energy of NS could be much smaller than its maximum mass.



Part Il.
Conserved charges
without symmetry

S. Aoki, T. Onogi and S. Yokoyama,
“Charge conservation, Entropy, and Gravitation”,
arXiv:2010.07660[gr-qgc].



Charge [Q[U] (t) = /E A’ \/?Toyv”,]

dQ)|v 5 y . : :
% | — / d*1%\/|g|T*,V,v” #0 in generic spacetime w/o symmetry
>
.. . (" ) . i cie
sufficient condition TH T oY — conservation condition
for conservation C v ) for v

* Aluz/ayv,u + B,UJU'M — () AMV — TMV7 B,u — Taﬁrgu

fix direction v* =vd} * A“@uv + Bv = (0 1storder linear PDE

dat initial | : :
dt A(z). e e s g A solution exists
t on a hyper surface .
dv(t) . (at least locally in t).
o — —B(Qj)v(t) at fixed t.

simultaneous linear ODE

cf. Kodama vector is a solution for the spherically symmetric case.



dQ[v]
dt

Hereafter, we consider the case where the vector is proportional to time direction,
and write it as o = ¢¥

S = Q[(] = /dd_lxso st = /|g|TH, ¢

=0 we can define a generic conserved charge in general relativity.

What is this conserved charge ?

(1) This is not a Noether charge, since no symmetry exists.

(2) This is not an energy, but reduces to the energy for the Killing vector.



lI-1. (a special type of) Perfect fluid

™, = pntn, + Pg", n*: unit time evolution vector n- =

gt', =0 +ntn,

* pont0,8 — BPK =0 K :=g",V,n" =V, n"
extrinsic curvature

charge density sY = p\/—gn’B = up u := pv: local energy g := det gy,
v :=4/g: local volume

Z| -

ds* = —N?(dz")? + g;;dx"dz?

conservation condition for
(F = —Bnt

.4 ds®  du dp du dv oxH
Variations (22 p nt — 27
o’ % <d77+ dn)ﬂ on
1 d(log /g
@ ds _ BPK _ BPdv K= 0,(/gln") = & 5\/5)
dn 0 U dn vari i
, r N
If we take S = T Tdi _ du + pdv 1st law of thermodynamics
dn  dn  dn
- J

entropy current density
* Ent S = = [ d¥ 1z s0 y
| "OPY| Q|[¢] / TS gh — /|9|TMVC |

conserved



conservation of Energy Momentum Tensor

(V. TH,)n” =0 * n*o,p+ (p+P)K =0
( )4 pic =0 * g = 50—€XP

entropy density is constant on the trajectory.




[I-2. Homogeneous and Isotropic Universe

ds® = —dt®> + a*(t)g;;da’da? ~ Freedman-Lemaitre-Robertson-Walker metric

", = pnfn, + Pg,. perfect fluid

_ . _
b= 60% CXp | — / dnK * p(t)a? 1 (t)5(t) = u(t)B(t) = t-independent
1o .

d(loga®*(t))
dt

Tds® = du + Pdv = 0 *

dv > 0 (expand) = du < 0

K — du<0=ds>0

T decreases as the Universe expands p =0

(T: constant for P=0)

For the closed Universe, it expands, stops and contracts.

Entropy is conserved during this process.



[I-3. Exact gravitational plane wave

ds? = W (dz? — dr?) + u?(e2PWdy? + e 2P W q2?) U=T—T

6—29
* EMT T =T72 =T, = -T% = -— (20" —up")

: B SK
conservation vectors vy = —o vl =6

* conserved charges Fp_ p — X_2 dou (200 — uB'?)

T

* E:Pa::O vRabzoaaRabcd#O

The Ricci flat gravitational wave does not carry energy/momentum.

< >
>

\

200 —uB'? =0
UB//+25/_U25/37£0

T, =0,R,08 # 0




[I-4. Black hole entropy

Schwarzschild black hole solution

d—2)rd=35(r 5
oo SH ._( M__ *5# —
o= i, pi= U270 *c (@) * )
(d Q)Vd 27“d3
d—1 .0 (= FE =
* S:—/d xT (7)) = EC 167Gy

d — 3 _ 2A7°?J l
_ T .— d—2
Assume TdS dF 47TTH \ dE (d 2)Vd 2,rd 3
Hawking temperature Tdr 4G
u(rg) = —1
outer horizon
d—2
= — _ = —/ d’r'H = Vd_QTH
Td’I“H 4GdE

g Y- 27 _ An Bekenstein-Hawking formula
1G,  4a, 9

However, entropy is localized at the origin, not at the horizon.



BTZ black hole (H = —(o* S =FE(

Assume ) 2
5 ) 5 mL J _
oS 1 R L= L+4/1- - horizon

OF |,

Hawking temp. o ri +r2 p._ 2y
8G5L2 ' ¢ 8GsL

1 "t odry dr_ 2rry Apg
d _— _— . p— - —
/ T Tdr+ 405 ), T (” T dr+> 4G5 4G5
P, 0 dr_ v Bekenstein-Hawking
d7°_|_ dT+ - T+
Furthermore
0S r_
95 __2mr-L chemical potential wu¢ =T .| T I
8P¢ E 7“_2|_ — 7“2_ ¢ E T+

* TdS = dE — pgdPy 1st law of thermodynamics



Summary and Outlook



Part |.

covariant and universal definition of
conserved energy for the 1st time

E = / dXor/—gT? ,E*
3 (x9)

Killing
By = A= DVaorg™ g ld = SVaary
16mGy 16mGy
Neutral Charged BTZ compact
BH BH BH star
m™m
E — @
Ours Eours +00 J Eours — AFE
P —_—
° 7 8G,
F =
Komar oo (A #0) o g oo (A # 0)
(VOIUmE) EKomar (A — O) Pd) - ﬁ EKomar (A — 0)
3
F =
Komar oo (A #0) I g oo (A #0)
(Surface) EKomar (A — O) P¢ = @ EKomar (A — O)

failure of Stokes’ theorem



Part Il.

generic conserved Charge = entropy S = / d>io\/ —gTOMC'u
3 (x9)

A correct understanding of general relativity after 105 years from Einstein.

Entropy is a source of the gravitational interaction.

Gravitational fields do not carry energy/entropy.

A total entropy in the whole system is always conserved,
as nhothing can escape from a censorship of gravity.

RAMKIKERIC LTRSS &9,

Gravity may provide a new tool to define entropy and temperature
In an arbitrary system.



Future investigations

Classical general relativity
binary stars How do they loose “energy” ?

gravitational collapse

Quantum gravity
Is it necessary to quantize gravity ?
Gravitational fields classically have no energy/entropy.

No exchange of energy/entropy between matters and gravitational fields.

If necessary, how can we quantize gravitons with no observed energy/entropy 7



