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Neutron star structure
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Equation of State (EoS)
p = p(ε)



Neutron star structure
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Equation of State (EoS): p = p(ε)

Initial value problem
Initial: 

 
 

 

r = 0
ε(r = 0) = εc
p(r = 0) = p(εc) = pc
m(r = 0) = 0

Final: 
 

 
 

r = R
ε(r = R) = 0
p(r = R) = 0
m(r = R) = M

free parameter -  relationM R



Equation of state (EoS)
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EoS: pressure function , , or p(nB) p(ε) p(μB)
( : baryon density,  : energy density,  : chemical potential)nB ε μB

 ρ

Özel,Freire (2016)

“Spaghetti diagram”, a little messy…



A QCD physicist’s view on the NS EoS
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ChEFT: Tews,Carlson,Gandolfi,Reddy (2018); 
Drischler,Furnstahl,Melendez,Phillips (2020)

(n0 = 0.16 fm−3)

Chiral EFT

Perturbative QCD

pQCD: Freedman,McLerran (1978); Baluni (1979); 
Kurkela,Romatschke,Vuorinen,Gorda,Sappi (2009-)

Constraints from QCD point of view:



A QCD physicist’s view on the NS EoS
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Constraints from QCD point of view:

(n0 = 0.16 fm−3)

Perturbative QCD

Yet unknown
?Chiral EFT

ChEFT: Tews,Carlson,Gandolfi,Reddy (2018); 
Drischler,Furnstahl,Melendez,Phillips (2020)

pQCD: Freedman,McLerran (1978); Baluni (1979); 
Kurkela,Romatschke,Vuorinen,Gorda,Sappi (2009-)



Our result in a nutshell
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αs(Λ̄) = 4π
β0 log(Λ̄2/Λ2

MS) [1 − 2β1
β2

0

log2(Λ̄2/Λ2
MS)

log(Λ̄2/Λ2
MS) ] uncertainty: originate from 

scale variation 
Λ̄ = μ, 2μ, 4μ

conventional 
pQCD

Our result  
with resummation
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αs(Λ̄) = 4π
β0 log(Λ̄2/Λ2

MS) [1 − 2β1
β2

0

log2(Λ̄2/Λ2
MS)

log(Λ̄2/Λ2
MS) ] uncertainty: originate from 

scale variation 
Λ̄ = μ, 2μ, 4μ

uncertainty 
lessened

Applicability of  
pQCD extended

conventional 
pQCD

Our result  
with resummation



Analogy with high temperature case
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Fig. 1.— Predictions for pressure of hot three-flavor QGP ob-
tained from lattice QCD, the MIT bag model and perturbative
QCD. The error bars reflect various uncertainties in the results.
The quantities are normalized by the pressure of a system of free
quarks and gluons.

Within perturbative thermal field theory, the EoS of a
given system is obtained by expanding the path integral
representation of the partition function in terms of zero-
point Feynman diagrams. The expansion is, however,
somewhat complicated by the fact that diagrams with
any number of loops can contribute at the same order in
αs. This is seen explicitly in the fact that at order α2

s the
pressure of zero-temperature QCD obtains contributions
from an infinite set of so-called plasmon or ring diagrams
(Kraemmer & Rebhan 2004).
Having determined the weak coupling expansion to a

given order in αs, we observe that the result has be-
come a function of an unphysical auxiliary parameter,
the renormalization scale Λ̄. As long as the perturba-
tive expansion converges, this dependence is, however,
guaranteed to decrease order by order, and thus the sen-
sitivity of our result on the parameter can be interpreted
as reflecting the systematic error introduced by the trun-
cation of the series. This error is commonly estimated by
choosing a physically reasonable fiducial scale and vary-
ing the renormalization scale around it by a factor of
two; below, we too follow this procedure, choosing as the
central scale the commonly used value Λ̄ = (2/3)µB.
For the pressure of QCD at nonzero density, the

weak coupling expansion has so far been deter-
mined to O(α3

s ln αs) at temperatures T !
√
αsµ

(Vuorinen 2003; Ipp et al. 2006), to O(α2
s) at T = 0

(Freedman & McLerran 1976; Baluni 1977; Blaizot et al.
2001; Fraga et al. 2001; Kurkela et al. 2010a), and to
O(α2

s ln αs) between these two limits (Toimela 1984)
(see also Andersen & Strickland (2002); Gerhold et al.
(2004)). The calculation relevant for compact star
physics is clearly the O(α2

s) zero-temperature work of
Kurkela et al. (2010a), which most importantly also
takes into account the nonzero value of the strange quark
mass. It is exactly this EoS, applied to the special case
of electrically neutral and β-stable quark matter, that we
will analyze in the present letter.4 It is a function of the
baryon chemical potential µB and parametrized by the

4 There is some freedom involved with the choice of the thermo-
dynamical potential that one chooses to truncate at a given order
in αs, while other functions are derived from it demanding ther-
modynamic consistency. Unlike in Kurkela et al. (2010a), we have
for simplicity chosen to truncate here the pressure as a function of
µB .
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Fig. 2.— Same as in Fig. 1, but for the pressure of zero-
temperature quark matter in β equilibrium as a function of the
baryon chemical potential.

strong coupling constant and strange quark mass, which
are taken at arbitrary reference scales, αs(1.5GeV) =
0.326 and ms(2GeV) = 0.938GeV (Bazavov et al. 2012;
Aoki et al. 2013), and then let evolve as functions of the
MS scale Λ̄.
We find that the EoS and its first and second deriva-

tives are to a very good accuracy described by the com-
pact fitting function

PQCD(µB, X) = PSB(µB)

(

c1 −
a(X)

(µB/GeV)− b(X)

)

,

(1)

a(X) = d1X
−ν1 , b(X) = d2X

−ν2 , (2)

where we have denoted the pressure of three massless
noninteracting quark flavors (at Nc = 3) by

PSB(µB) =
3

4π2
(µB/3)

4. (3)

The dependence of the result on the renormalization scale
is contained in the functions a(X) and b(X), which de-
pend on a dimensionless parameter proportional to the
scale parameter, X ≡ 3Λ̄/µB, that is allowed to vary
from 1 to 4.
The values of the constants {c1, d1, d2, ν1, ν2} are fixed

by minimizing the value of the following merit function

χ2 = [∆P (µB , X)]2 + [∆N(µB, X)]2 + [∆c2s(µB, X)]2,
(4)

where ∆P , ∆N , and ∆c2s are the differences between
the values of the pressure, quark number density and
speed of sound squared obtained from the fit and
from the corresponding full perturbative expressions of
Kurkela et al. (2010a), normalized to the corresponding
Stefan-Boltzmann values. For our best fit values

c1 = 0.9008 d1 = 0.5034 d2 = 1.452 (5)

ν1= 0.3553 ν2= 0.9101, (6)

we obtain a good fit (
√

χ2 " 0.03) in the region de-
fined by the conditions µB < 2GeV, P (µB) > 0, and
X ∈ [1, 4]. We have checked that all relevant observ-
ables depending on the pressure and its first and second
derivatives (such as the energy density as a function of
pressure) are faithfully described by the fit.

Fraga,Kurkela,Vuorinen (2013)
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Hard Thermal Loops (HTL)
- The problem of the gauge-dependent gluon damping rate at 

finite temperature (two scales:  & ) : 

                                      

   (in Coulomb gauge),   (in covariant gauge) 

- Hard thermal loop (HTL) resummation: 
resum certain kinds of diagrams called HTLs, and use 
effective resummed propagator 
  

  (both in Coulomb and covariant gauge)

g T

γg = a
g2T
8π

a = 1 a = − 5

a ≃ 6.635

12

Heinz,Kajantie,Toimela,… (1987)

Braaten,Pisarski (1990)



Need of resummation
Prototypical example: an anharmonic oscillator 

                                  
ground state energy: 

      , 

V(x) = ω2

2 x2 + g
4 x4

E(g) = ω
∞

∑
n=0

cBW
n ( g

4ω3 )
n

cBW
n

n→∞ (−1)n+1 6
π3 3n (n − 1

2 )!

13

Bender,Wu (1968)

5

FIG. 3. Weak-coupling expansion results of the ground-state energy of an anharmonic oscillator.

Curves in different colors correspond to the ground-state energy up to various orders in the weak-coupling expansion.
Instead of converging, Fig. 3 shows clearly that the weak-coupling results are oscillating. If keep adding higher order
terms, the results would be bended up and down more steeply. Finally as n → ∞, the resulting curve would blow to
infinity right from the origin which demonstrates the meaning of zero radius of convergence. This result is striking
and highly nontrivial: Intuitively “a small coupling expansion” sounds like “a perturbative expansion”, however the
above result actually indicates that “small coupling” may not be “perturbative” which is totally against our intuition!
The anharmonic oscillator therefore provides a simple example for the breakdown of weak-coupling expansion, and
calls the need of resummation.

III. VARIATIONAL PERTURBATION THEORY

In order to improve the convergence of the weak-coupling expansion and with the inspiration from the Feynman-
Kleinert variational approach to path integral [60],2 strong-coupling expansion of variational perturbation theory was
developed in the 1990s [42–49].3

The basic idea of VPT is rather simple: First, the harmonic term of the potential is split into a new harmonic term
with a trial frequency Ω and a reminder:

ω2 → Ω2 +
(

ω2 − Ω2
)

. (5)

Then the anharmonic potential is rewritten into

V (x) =
Ω2

2
x2 + Vint(x), (6)

with an interaction

Vint(x) =
g

4
(rx2 + x4) , (7)

where

r ≡ 2

g

(

ω2 − Ω2
)

. (8)

After this rewriting, a perturbation expansion is carried out at fixed r which generates the new ground-state energy:

EN (g, r) = Ω
N
∑

n=0

cn(r)
( g

4Ω3

)n
, (9)

2 See also the independent development by Giachetti and Tognetti in Refs. [61–63]
3 For the development and other variants of VPT, we refer the reader to Refs. [64–114] for a far from complete list of early references.

Review by Su(2012)
poor convergence…



Need of resummation
Variational perturbation theory (VPT): 
                                 

          

                                                         ( ) 
minimize ground state energy w.r.t. : 

             , (  )

ω2 → Ω2 + (ω2 − Ω2)
V(x) = ω2

2 x2 + g
4 x4 → V(x) = Ω2

2 x2 + g
4 (rx2 + x4)

r := 2(ω2 − Ω2)/g
Ω

∂EN

∂Ω
Ω=ΩN

= 0 EN(g, r) = Ω
N

∑
n=0

cn(r)( g
4Ω3 )

n

14

Feynman,Kleinert,… (1986)

Review by Su(2012)

6

FIG. 4. Variational perturbation theory results of the ground-state energy of an anharmonic oscillator.

where the new coefficients cn(r) are obtained from the old Bender-Wu coefficients cBW
n through

cn(r) =
n
∑

j=0

cBW
j

(

(1− 3j)/2
n− j

)

(2rΩ)n−j . (10)

Recall here that the trial frequency Ω was introduced solely as an auxiliary parameter for computational convenience.
It is not in the original anharmonic potential (1), therefore it should not appear in the final result. The Ω dependence
of Eq. (9) can be eliminated by requiring the principle of minimal sensitivity at each order N

∂EN

∂Ω

∣

∣

∣

∣

Ω=ΩN

= 0 . (11)

The VPT ground-state energy is plotted in Fig. 4. The axes are the same as in Fig. 3. The black curves are the
VPT results up to the first four odd orders in the new expansion. They are almost completely overlapped with each
other, and one cannot distinguish the difference between different orders by eyes.4 However despite of the apparent
convergence, we still have to ask whether the VPT results converge to the correct value. By performing a strong-
coupling expansion, It has been shown by Janke and Kleinert [47] that the VPT results for the the first strong-coupling
expansion coefficient α0 agreed to all 23 digits with the most accurate value for α0 available in the literature [115].
The convergence radius of the VPT strong-coupling expansion was rigorously proven to be infinity in Ref. [116].
We have been convinced by VPT in improving the convergence of the weak-coupling expansion from the above

simple example. The natural question here to ask is whether such trick could be applied to field theory, especially
to QCD for phenomenological interest. The answer is yes, but we have to do it very carefully, cause simply adding
a mass term to the QCD Lagrangian would violate gauge symmetry even at the Lagrangian level. We are going to
address this subtlety in the next section.

IV. HARD-THERMAL-LOOP PERTURBATION THEORY

We have seen the oscillating behavior of weak-coupling expansion for thermal gauge theories in Sec. I. In order to
improve the convergence of perturbation calculations and with the inspiration from VPT, hard-thermal-loop pertur-
bation theory was introduced by Andersen, Braaten and Strickland as a reorganization of thermal gauge theory in
1999 and the one-loop or leading order (LO) thermodynamic calculations were carried out in Refs. [30–32]. Later
on HTLpt got extended to two loops or next-to-leading order (NLO) in which a further mass expansion was intro-
duced to make the calculation tractable in practice [33, 34]. The three-loop or next-to-next-to-leading order (NNLO)
HTLpt calculations have been accomplished recently for both Abelian [35] and non-Abelian [36–39] theories, and the
NNLO results turned out to be completely analytic. In the rest of this section, we are going to discuss the setup of
HTLpt, and results of thermodynamic calculations through NNLO. Please check the above mentioned references for
calculational details.

4 The figure is generated by Mathematica for illustration. Due to numerical subtleties, the results up to the first two even orders are not
easily obtained in Mathematica, therefore the even orders are skipped in Fig. 4.

Effective resummation  
by VPT cures the 

convergence problem



QCD thermodynamics at high T
- The same problem of poor convergence resides in the 

QCD EoS at high T:

15

3

FIG. 1. Weak-coupling expansion for the scaled QCD pressure with Nf = 3. Shaded bands show the result of varying the
renormalization scale µ by a factor of 2 around µ = 2πT .

(QED) [12] and QCD [11, 12], respectively. The corresponding calculations to order g5 were obtained soon afterwards
[13–20]. Recent results have extended the calculation of the QCD free energy by determining the coefficient of the
g log g contribution [21]. For massless scalar theories the perturbative free energy is now known to order g6 [22] and
g8 log g [23].
Unfortunately, for all the above mentioned theories the resulting weak-coupling approximations, truncated order-

by-order in the coupling constant, are poorly convergent and show large dependence on the renormalization scale
unless the coupling constant is tiny which corresponds to astronomically high temperatures. In Fig. 1, we show the
weak-coupling expansion for the QCD pressure with Nf = 3 normalized to that of an ideal gas through order g5. The
various approximations oscillate wildly and show no signs of convergence in the temperature range shown which is
probed in the ongoing experiments. The bands are obtained by varying the renormalization scale µ by a factor of 2
around the value µ = 2πT and we use three-loop running for αs [24] with ΛMS(Nf = 3) = 344MeV [25]. In Fig. 2
we show the weak-coupling expansion for the QED pressure with Nf = 1 normalized to that of an ideal gas through
order e5, and we see clearly the same poor convergence pattern as the QCD case. Therefore this oscillating behavior
is not specific to QCD, but a generic feature for hot field theories which actually has been also observed in scalar
theories [10, 11, 13, 14, 22, 23]. Due to this subtlety, a straightforward perturbative expansion in powers of αs for
QCD does not seem to be of any quantitative use even at temperatures many orders of magnitude higher than those
achievable in heavy-ion collisions.
The poor convergence of finite-temperature perturbative expansions of thermodynamic functions stems from the fact

that at high temperature the classical solution is not described by massless particle states. Instead one must include
plasma effects such as the screening of electric fields and Landau damping via a self-consistent hard-thermal-loop
(HTL) resummation [26]. The inclusion of plasma effects can be achieved by reorganizing perturbation theory. There
are several ways of systematically reorganizing the finite-temperature perturbative expansion [27–29]. In this paper
we will focus on the hard-thermal-loop perturbation theory (HTLpt) method [30–41]. The HTLpt method is inspired
by variational perturbation theory (VPT) [42–49]. HTLpt is a gauge-invariant extension of screened perturbation
theory (SPT) [50–54], which is a perturbative reorganization for finite-temperature massless scalar field theory. In
the SPT approach, one introduces a single variational parameter which has a simple interpretation as a thermal
mass. In SPT a mass term is added to and subtracted from the scalar Lagrangian, with the added piece kept as
part of the free Lagrangian and the subtracted piece associated with the interactions. The mass parameter is then
required to satisfy either a variational or perturbative prescription. This naturally leads to the idea that one could
apply a similar technique to gauge theories by adding and subtracting a mass in the Lagrangian. However, in gauge
theories, one cannot simply add and subtract a local mass term since this would violate gauge invariance. Instead,
one adds and subtracts an HTL effective action which modifies the propagators and vertices selfconsistently so that
the reorganization is manifestly gauge invariant [55].

Review by Su(2012)

Hatsuda (1997)



HTL perturbation theory
- HTL perturbation theory (sort of VPT) is one way to 

implement HTL resummation 

- Hot QCD EoS with improved convergence confronting 

lattice data:
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Figure 1. Comparison of the Nf = 2+1, µB = 0 (left) and µB = 400 MeV (right) NNLO HTLpt
pressure with lattice data from Borsanyi et al. [1, 4] and Bazavov et al. [13]. For the HTLpt results
a one-loop running coupling constant was used.
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Figure 2. Same as fig. 1 except with a three-loop running coupling constant.

6.3 Pressure

The QGP pressure can be obtained directly from the thermodynamic potential (4.5)

P(T,Λ, µ) = −ΩNNLO(T,Λ, µ) , (6.5)

where Λ above is understood to include both scales Λg and Λq. In figures 1 and 2 we

compare the scaled NNLO HTLpt pressure for µB = 0 (left) and µB = 400 MeV (right)

with lattice data from refs. [1, 3, 13]. In order to gauge the sensitivity of the results to

the order of the running coupling, in fig. 1 we show the results obtained using a one-loop

running and in fig. 2 the results obtained using a three-loop running. As can be seen by

comparing these two sets, the sensitivity of the results to the order of the running coupling

4We have checked that for the scale range of interest, this is a very good approximation to the exactly

integrated QCD three-loop β-function.

– 14 –

Andersen,Braaten,Strickland,… (1998)

Haque,Bandyopadhyay,Andersen, 
Mustafa,Strickland,Su (2014)

cf) Pade: Hatsuda (1997), Optimized PT: Chiku,Hatsuda (1998),  
EQCD: Blaizot,Iancu,Rebhan (2003), Laine,Schroder (2006)



Hard Dense Loops (HDLs)
- Hard dense loops (HDLs): 

 and  counterpart of the HTLs 
  cf. thermal quark mass: 

                   

- Parallelism between  has been studied 

- EoS calculations at : 
- Baier, Redlich: hep-ph/9908372 
- Andersen, Strickland: hep-ph/0206196

T = 0 μ > 0

m2
q = g2

6 (T2 + μ2

π2 )
T ↔ μ

T = 0

17

Manuel (1996)



What we calculate here

18

HDL resummed full propagator

Quark contribution to the pressure :p
p(μ) = Tr log S−1

Σ ≡
m2

q

k
γ0Q0 ( k0

k ) +
m2

q

k
γ ⋅ k̂ [1 − k0

k
Q0 ( k0

k )]
Self-energy  in HDL approximation:Σ

(Legendre function:  

)Q0(x) = 1
2 log x + 1

x − 1

Supplemental Material: Equation of state of cold and dense QCD matter in
resummed perturbation theory

Yuki Fujimoto and Kenji Fukushima
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7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

I. DETAILS OF INTEGRATION: THE QUARK CONTRIBUTION TO THE PRESSURE

Here, we will supplement the details of integration that appears in the derivation of Eq. (5) in the main text. The
quark part of the pressure appears from the flavor-f quark loop:

Pq,f (T, µf ) = tr lnG�1

f (1)

=
XZ

{K}
ln det [/k �Mf � ⌃(i!̃n + µf , k)]

= 2
XZ

{K}
ln
⇥
A2

S(i!̃n + µf , k) +M2

f �A2

0
(i!̃n + µf , k)

⇤
, (2)

where we write the sum-integral as
PR

{K} = T
P

!̃n

R
k in d = 3�2✏ spatial dimensions for the momentum integration.

The functions A0 and AS are defined in the main text. We note that Pq,f in Eq. (1) can be regarded as a leading
contribution in the 2PI or the Cornwall-Jackiw-Tomboulis (CJT) formalism [1, 2]. This explains why Eq. (1) misses
an additional term, tr⌃Gf , that may be responsible for the deviation of O(↵s), which will be studied below.

We recast the Matsubara sum into the contour integral along C as depicted in the left panel of Fig. 1. We can
deform the contour C into Cqp [ CLd, see the right panel of Fig. 1. We identify the terms from Cqp and CLd with the
quasiparticle contribution and the Landau damping contribution, respectively, according to Refs. [3, 4]:

Pqp/Ld,f (T, µf ) =

Z

k

I

Cqp/Ld

d!

2⇡i
ln
⇥
A2

S(!, k) +M2

f �A2

0
(!, k)

⇤
tanh

✓
�(! � µf )

2

◆
. (3)

C
…

�f

Re �

Im �

Re �

Im �

k�k

+�f���f�

Cqp

CLd

+�f+��f+

FIG. 1. (Left) Original contour C corresponding to the Matsubara sum. (Right) Deformed contours, Cqp and CLd.

Strange quark mass is included
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Pq,f (T, µf ) = tr lnG�1

f (1)

=
XZ

{K}
ln det [/k �Mf � ⌃(i!̃n + µf , k)]

= 2
XZ

{K}
ln
⇥
A2

S(i!̃n + µf , k) +M2

f �A2

0
(i!̃n + µf , k)

⇤
, (2)

where we write the sum-integral as
PR

{K} = T
P

!̃n

R
k in d = 3�2✏ spatial dimensions for the momentum integration.

The functions A0 and AS are defined in the main text. We note that Pq,f in Eq. (1) can be regarded as a leading
contribution in the 2PI or the Cornwall-Jackiw-Tomboulis (CJT) formalism [1, 2]. This explains why Eq. (1) misses
an additional term, tr⌃Gf , that may be responsible for the deviation of O(↵s), which will be studied below.

We recast the Matsubara sum into the contour integral along C as depicted in the left panel of Fig. 1. We can
deform the contour C into Cqp [ CLd, see the right panel of Fig. 1. We identify the terms from Cqp and CLd with the
quasiparticle contribution and the Landau damping contribution, respectively, according to Refs. [3, 4]:

Pqp/Ld,f (T, µf ) =

Z

k

I

Cqp/Ld

d!

2⇡i
ln
⇥
A2

S(!, k) +M2

f �A2

0
(!, k)

⇤
tanh

✓
�(! � µf )

2

◆
. (3)

C
…

�f

Re �

Im �

Re �

Im �

k�k

+�f���f�

Cqp

CLd

+�f+��f+

FIG. 1. (Left) Original contour C corresponding to the Matsubara sum. (Right) Deformed contours, Cqp and CLd.

Integration contour deformation:

tedious calculation…



Diagrammatic argument

19

High-order QCD

P (µB)/Pfree ∼ 1+ c1g
2

︸︷︷︸
NLO

+ c2g
4 + c′2g

4 log g︸ ︷︷ ︸
NNLO

+ c′3g
6 log2 g + c′′3g

6 log g + . . .︸ ︷︷ ︸
N3LO

Full NNLO with full mass dependence: AK et al. PRD81 (2010)
Full T -dependence: AK, Vuorinen PRL 117 (2016)

Leading-log N3LO: Gorda, AK, Vuorinen, Romatschke, Säppi, PRL 121 (2018)
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Taken from A. Kurkela’s slide

Hard dense loops:

What we calculate: full propagator

higher order diagrams already 
appears at the leading order

NLO

NNLO

NNNLO



In terms of the 2PI language
- 2PI (CJT) formalism: 

 

                                                     ( : gluon full propagator) 

- 2PI formalism employs propagator with the self-energy 
insertion → quasi-particle approximation 

- May not be a systematic expansion in the coupling 

p[D, S] = − 1
2 Tr log D−1 + 1

2 Tr ΠD

+Tr log S−1 − Tr ΣS − Φ2[D, S]
D

αs
20

Cornwall,Jackiw,Tomboulis(1974)

2 J.-P. Blaizot et al.: Comparing different hard-thermal-loop approaches to quark number susceptibilities

technical difficulty that has been overlooked by the au-
thors of Ref. [11], but has the effect to render their result
ill-defined in a distributional sense.

More importantly even, we comment on a conceptual
problem with the approach followed in Ref. [11], which
arises because the HTL action is no longer used as the ef-
fective theory for soft modes, but is used throughout all of
phase space. Implicitly the definition of the quark number
charge operator is modified such as to no longer conform
with the operator employed in lattice calculations.

Before discussing the approach of Ref. [11] in detail in
Sect. 3, we briefly review the QNS as obtained from HTL-
resummed thermodynamic potentials. Sect. 4 summarizes
our conclusions.

2 QNS from resummed thermodynamic
potentials

2.1 Generalities

The QNS of a given quark flavour is by definition the re-
sponse of the quark number density N to an infinitesimal
variation of the associated chemical potential µ,

χ =
∂N

∂µ
=
∂2P

∂µ2
= β

∫

d3x 〈ρ(0,x)ρ(0,0)〉 (2)

where P = (βV )−1 logZ is the thermodynamic pressure,
β = T−1 and ρ = ψ̄γ0ψ.

When thermodynamic consistency is automatic, for ex-
ample in strict perturbation theory to a given order in αs,
it does not matter which of the equivalent expressions on
the right-hand side of (2) is employed. However, when fur-
ther resummations are performed that amount to a partial
inclusion of higher-order effects, it does in fact matter. To
set the stage we begin by briefly reviewing the approaches
which focus on the thermodynamic potential before turn-
ing to Ref. [11] which starts from the quark number charge
correlator.

Expressed as a functional of full propagators (D for
gauge bosons and S for fermions, and assuming a ghost-
free gauge choice) the thermodynamic potentialΩ = −PV
= −T logZ has the form [12]

βΩ[D,S] =
1

2
Tr logD−1 −

1

2
TrΠD

−Tr logS−1 +TrΣS + Φ[D,S] (3)

where Φ is the sum of 2-particle-irreducible “skeleton” di-
agrams whose lowest-order (2-loop) contributions are

Φ[D,S] = -1/12 -1/8 +1/2 + ...

As a functional of D and S, Ω is subject to the sta-
tionarity condition,

δΩ[D,S]/δD = 0 = δΩ[D,S]/δS, (4)

which is equivalent to

δΦ[D,S]/δD =
1

2
Π, δΦ[D,S]/δS = Σ, (5)

for the self-energiesΠ and Σ. ExpressingΠ = D−1−D−1
0

and Σ = S−1 − S−1
0 in terms of bare propagators D0

and S0, the representation (3) of course reproduces the
ordinary loop expansion.

For example, the leading-order interaction terms ∝ αs

are given by the 2-loop diagrams in Φ, whereas single pow-
ers of the self-energy insertions in a propagator cancel out
in the first four terms of the right-hand side of eq. (3).

Ordinary perturbation theory, however, has infrared
problems at finite temperature if the repeated self-energy
insertions contained in the term 1

2Tr logD
−1 are expanded

out perturbatively. These can be remedied by a resumma-
tion of the leading order Debye mass

m̂2
D = (2N +Nf )

g2T 2

6
+
∑

i

g2µ2
i

2π2
(6)

in the (chromo-)electrostatic propagator, where g2 = 4παs

(though new infrared problems arise at order α3
s). Ex-

panded in powers of g, the resummation of the Debye
mass in 1

2Tr logD
−1 gives rise to the so-called plasmon

term in the pressure

P3 = NgTm
3
D/(12π). (7)

It is this term which is responsible for the dramatic deteri-
oration of the apparent convergence of a perturbative ex-
pansion of P in g at finite temperature, and, as remarked
in the introduction, to a somewhat lesser degree for QNS
which can be derived from the pressure.

2.2 Screened (HTL) perturbation theory

The loss of apparent convergence upon inclusion of the
plasmon term in the pressure is in fact generic and also
occurs in a simple scalar ϕ4 theory [13]. This problem
arises as soon as finite-temperature contributions are ex-
panded out in powers of the coupling, which is necessary
for the standard ultraviolet renormalization programme
to become applicable. In order to avoid this, it has been
proposed [14] to reorganize perturbation theory by adding
screening masses to the classical Lagrangian and to sub-
tract them as counter-terms, but in contrast to the usual
resummation programme at finite temperature [9,10], this
is done for both hard and soft momentum regimes. This
in fact alters the ultraviolet structure of the theory, but
when combined with a simple minimal subtraction of the
additional divergences this resummation appears to sig-
nificantly improve the apparent convergence of thermal
perturbation theory.

In Refs. [15,16] this approach has been extended to
QCD at one-loop level. It amounts to keeping only the
logarithmic terms in (3) and replacing D and S by the
HTL propagators,

βΩ1−loop−HTL =
1

2
Tr log D̂−1 − Tr log Ŝ−1 (8)

Blaizot,Iancu,Rebhan (1999-)



 (renormalization scale) dependenceΛ̄
- Use perturbative expression for screening mass  in : 

- Renormalization scale  dependence enters the theory 
through the running coupling : 

- : only undetermined const. 
set to the typical scale of system: 
         
“uncertainty” of  is evaluated as: 
       

mq Σ

Λ̄
αs(Λ̄)

Λ̄

Λ̄ = 2μ
Λ̄

Λ̄ ∈ [μ,4μ]
21

m2
q = 4αs(Λ̄)

3π
μ2 ( )Σ ≡

m2
q

k
γ0Q0 ( k0

k ) +
m2

q

k
γ ⋅ k̂ [1 − k0

k
Q0 ( k0

k )]

αs(Λ̄) = 4π
β0 log(Λ̄2/Λ2

MS) [1 − 2β1
β2

0

log2(Λ̄2/Λ2
MS)

log(Λ̄2/Λ2
MS) ]

αs(Λ̄) = 4π
β0 log(Λ̄2/Λ2

MS)

× [1 − 2β1
β2

0

log2(Λ̄2/Λ2
MS)

log(Λ̄2/Λ2
MS) ]

(ΛMS = 378 MeV)
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Result from the HDL resummed QCD 

23

Fujimoto, Fukushima: 2011.10891 (2020)

No convergence problem from the beginning.  
Uncertainty seems not much improving…



Result from the HDL resummed QCD 

24

HDL resummed 
(our result)

pQCD

αs(Λ̄) = 4π
β0 log(Λ̄2/Λ2

MS) [1 − 2β1
β2

0

log2(Λ̄2/Λ2
MS)

log(Λ̄2/Λ2
MS) ]

 widens  
the error band
Λ̄ = μ

uncertainty: originate from scale 
variation Λ̄ = μ, 2μ, 4μ

 works  
reasonably

Λ̄ > 2μ

Fujimoto, Fukushima: 2011.10891 (2020)



Heuristic argument

25

Density is screened in HDL 
resummation at constant μ

p(μ) nB(μ)

Pressure does not differ 
at constant μ

→ in HDL resummation, 
     the same value of  realizes at lower  
     especially for 

p nB
Λ̄ = μ

Fujimoto, Fukushima: 2011.10891 (2020)



Result from the HDL resummed QCD 

26

HDL resummed 
(our result)

pQCD

αs(Λ̄) = 4π
β0 log(Λ̄2/Λ2

MS) [1 − 2β1
β2

0

log2(Λ̄2/Λ2
MS)

log(Λ̄2/Λ2
MS) ] uncertainty: originate from scale 

variation Λ̄ = μ, 2μ, 4μ

pQCD breakdown 
 is lowerednB

Fujimoto, Fukushima: 2011.10891 (2020)



Speed of sound
- Speed of sound: ; 

asymptotic freedom:  (“conformal limit”)
c2

s = ∂p/∂ε
c2

s → 1/3

27

Fujimoto, Fukushima: 2011.10891 (2020)



Speed of sound
- The commonly shown graph for speed of sound

28

3

0 1 2 3 4 5 50 100 150

n [n0]

0

1/3

2/3

1

c2 S
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Conformal limit

Causality: c2
S < 1

(a)
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Neutron matter

Neutron stars

Perturbative QCD

Figure 1. Two possible scenarios for the evolution of the speed of sound in dense matter.

For QCD at finite baryon density, we are unaware of compelling reasons to expect that c2S <
1/3, and based on the preceding arguments, we will consider two minimal scenarios, which are
illustrated in Fig. 1. The scenario labeled (a) corresponds to the case when we assume that QCD
obeys the conformal limit c2S < 1/3 at all densities, and scenario (b) corresponds to QCD violating
this conformal bound. The behavior of cS at low and high density is constrained by theory, and
we shall show that NS observations, when combined with improved ab initio calculations of PNM,
can distinguish between these two scenarios, and provide useful insights about matter at densities
realized inside NSs.

This paper is structured as follows. In Section 2, we present constraints on the speed of sound from
nuclear physics. In Section 3, we extend the speed of sound to higher densities. In Section 3.1, we
study the EOS under the assumption that the conformal limit is obeyed and the speed of sound is
bounded by 1/

p
3. For this case, we find that cS needs to increase very rapidly above 1 � 2n0 to

stabilize a 2 M� NS. Such a rapid increase likely signals the appearance of a new form of strongly
coupled matter where the nucleon is no longer a useful degree of freedom. In Section 3.2, we release
this assumption but still find that models in which cS increases rapidly, reaching values close to c,
are favored. We study correlations in our parameterization in Section 3.3. In Section 4, we derive the
smallest possible radius for NSs consistent with nuclear physics and observations. We then investigate
the impact of possible additional observations in Section 5. Finally, we summarize our main findings
in Section 6.

2. EOS AND SPEED OF SOUND FROM NUCLEAR PHYSICS

2.1. The EOS of neutron matter

In this work, we use auxiliary-field di↵usion Monte Carlo (AFDMC) to find the many-body ground
state for a given nonrelativistic nuclear Hamiltonian (Carlson et al. 2014). In general, the nuclear
Hamiltonian contains two-body (NN), three-body (3N), and higher many-body (AN) forces,

H = T + VNN + V3N + VAN , (2)

Tews,Carlson,Gandolfi,Reddy (2018)

Nuclear 
theory Perturbative QCD

this scenario  
may also be possible!

Bedaque,Steiner (2015)

If  at high density, then there must be a peakc2
s > 1/3

Many discussions, e.g., Hippert,Fraga,Noronha (2021)



Smooth matching to the nuclear EoS?

29

EoS extracted from X-ray NS data using neural network 
: ChEFT EoS 

: extrapolation w/ the  pulsar constraint 
conventional nuclear EoS

nB ≤ n0
nB > n0 2M⊙

Fujimoto,Fukushima,Murase (2017-)

Hebeler,Lattimer,Pethick,Schwenk (2013)

Akmal,Pandharipande,Ravenhall (1998)

NN 

EFT+Astro 

APR

χ

Fujimoto, Fukushima: 2011.10891 (2020)



Smooth matching to the nuclear EoS?
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EoS extracted from X-ray NS data using neural network 
: ChEFT EoS 

: extrapolation w/ the  pulsar constraint 
conventional nuclear EoS

nB ≤ n0
nB > n0 2M⊙

Fujimoto,Fukushima,Murase (2017-)

Hebeler,Lattimer,Pethick,Schwenk (2013)

Akmal,Pandharipande,Ravenhall (1998)

NN 

EFT+Astro 

APR

χ

Fujimoto, Fukushima: 2011.10891 (2020)



Observational constraint
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Annala,Gorda,Kurkela,Nattila,Vuorinen (2019)
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Λ1.4M⊙
< 720

Typical range for hadronic EoS



Observational constraint
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Annala,Gorda,Kurkela,Nattila,Vuorinen (2019)
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Mmax > 2M⊙

Λ1.4M⊙
< 720

Typical range for hadronic EoS

Slope change?



Discussion: conventional pQCD vs HDLpt

- mismatch already at the order of : 

 

2(αs)
pHDLpt

pideal
≃ 1 − 2Nc

m2
q

μ2 + 2 (
m4

q

μ4 ) = 1 − 4 αs

π
+ 2(α2

s )
ppQCD

pideal
= 1 − 2 αs

π
− 2(α2

s )

33

ppQCD

pideal
= 1 − 2 αs(Λ̄)

π
− [9.267 + log αs(Λ̄)

π
− 31

3 log μ
Λ̄ ] α2

s (Λ̄)
π2 + 2(α3

s )

Baier,Redlich (1999)



Resolving the  discrepancy2(αs)
- mismatch already at the order of : 

 

 

- Add  to  to remedy the  

discrepancy 

-  in the pQCD calculation is attributed to negative 
β-function at , so we care about  discrepancy

2(αs)
pHDLpt

pideal
≃ 1 − 2Nc

m2
q

μ2 + 2 (
m4

q

μ4 ) = 1 − 4 αs

π
+ 2(α2

s )
ppQCD

pideal
= 1 − 2 αs

π
− 2(α2

s )

pcorr = 2 αs

π
pideal pHDLpt 2(αs)

c2
s < 1/3

2(αs) 2(αs)
34

ppQCD

pideal
= 1 − 2 αs(Λ̄)

π
− [9.267 + log αs(Λ̄)

π
− 31

3 log μ
Λ̄ ] α2

s (Λ̄)
π2 + 2(α3

s )

Baier,Redlich (1999)



Resolving the  discrepancy2(αs)

35

 still after 
 correction

c2
s > 1/3
2(αs)

Fujimoto, Fukushima: 2011.10891 (2020)



Discussion: strangeness content
- Fraction of the strange quarks: 

- Threshold strongly depends on 
the running of the current mass 
of strange quarks:

36

large scale 
dependence…
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Summary and outlook
- Resumming hard dense loops: systematic reorganization of 

perturbation theory, convergence improved 

- The result turned out to extend the pQCD applicability 
down to the realistic density in neutron stars 

- Several issues to be explored: 
  * Deeper reason why uncertainty is smaller? 
  * Evaluating higher order 2PI skeleton diagrams? 
  * Multi-pronged ab initio approach to the EoS: 
      QCD + ChEFT + NS observation + (QHC?) + …
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