Toward QCD-based description of dense baryonic matter

Yuki Fujimoto

(The University of Tokyo)

Reference:

<u>Y. Fujimoto</u>, K. Fukushima, "Equation of state of cold and dense QCD matter in resummed perturbation theory," arXiv:2011.10891.

29 June 2021, Seminar @ Riken iTHEMS

Neutron star structure

Pressure (nuclear force = strong interaction)

Hydrostatic equilibrium (pressure = gravitation) $\frac{dp(r)}{dr} = -G \frac{m(r)\varepsilon(r)}{r^2} \times \frac{(1+\frac{p}{\varepsilon})(1+\frac{4\pi r^3 p}{m})(1-\frac{2Gm}{r})^{-1}}{\text{General relativistic correction}} \xrightarrow{\text{Oppenheimer, Volkoff (1939)}}{\leftarrow \text{TOV equation}}$ $m(r) = \int_0^r dr 4\pi r^2 \varepsilon(r)$ Unknown variables: $p(r), m(r) \text{ and } \varepsilon(r) \xrightarrow{\text{One condition}}{\text{missing!}} \xrightarrow{\text{P}(r)} p = p(\varepsilon)$

Neutron star structure

TOV equation:

Tolman (1939) Oppenheimer,Volkoff (1939)

$$\frac{dp(r)}{dr} = -G\frac{m(r)\varepsilon(r)}{r^2} \times \frac{\left(1 + \frac{p}{\varepsilon}\right)\left(1 + \frac{4\pi r^3 p}{m}\right)\left(1 - \frac{2Gm}{r}\right)^{-1}}{\text{General relativistic correction}}$$
$$m(r) = \int_0^r dr 4\pi r^2 \varepsilon(r)$$

Equation of State (EoS): $p = p(\varepsilon)$

Initial value problem

Initial:free parameterFinal:r = 0free parameterr = RM-R relation $\varepsilon(r = 0) = \varepsilon_c$ $\varepsilon(r = R) = 0$ $\varepsilon(r = R) = 0$ $p(r = 0) = p(\varepsilon_c) = p_c$ p(r = R) = 0m(r = R) = M

Equation of state (EoS)

EoS: pressure function $p(n_{\rm B})$, $p(\varepsilon)$, or $p(\mu_{\rm B})$

($n_{\rm B}$: baryon density, ε : energy density, $\mu_{\rm B}$: chemical potential)

"Spaghetti diagram", a little messy... 4

A QCD physicist's view on the NS EoS

Constraints from QCD point of view:

ChEFT: Tews,Carlson,Gandolfi,Reddy (2018); Drischler,Furnstahl,Melendez,Phillips (2020) pQCD: Freedman,McLerran (1978); Baluni (1979); Kurkela,Romatschke,Vuorinen,Gorda,Sappi (2009-) ₅

A QCD physicist's view on the NS EoS

Constraints from QCD point of view:

ChEFT: Tews,Carlson,Gandolfi,Reddy (2018); Drischler,Furnstahl,Melendez,Phillips (2020) pQCD: Freedman,McLerran (1978); Baluni (1979); Kurkela,Romatschke,Vuorinen,Gorda,Sappi (2009-) ₆

Our result in a nutshell

Our result in a nutshell

Analogy with high temperature case

Outline of the talk

- Introduction
- Hard Dense Loop (HDL) resummation and the setup of calculations
- The result for the EoS and its phenomenological implication
- Summary

Outline of the talk

- Introduction
- Hard Dense Loop (HDL) resummation and the setup of calculations
- The result for the EoS and its phenomenological implication
- Summary

Hard Thermal Loops (HTL)

- The problem of the gauge-dependent **gluon damping rate** at finite temperature (two scales: g & T) :

$$\gamma_g = a \frac{g^2 T}{8\pi}$$

Heinz,Kajantie,Toimela,... (1987)

a = 1 (in Coulomb gauge), a = -5 (in covariant gauge)

- Hard thermal loop (HTL) resummation:

resum certain kinds of diagrams called HTLs, and use effective resummed propagator

Braaten, Pisarski (1990)

 $a \simeq 6.635$ (both in Coulomb and covariant gauge)

Need of resummation

Prototypical example: an anharmonic oscillator

Review by Su(2012)¹³

Need of resummation

Variational perturbation theory (VPT): $\omega^{2} \rightarrow \Omega^{2} + (\omega^{2} - \Omega^{2})$ $V(x) = \frac{\omega^{2}}{2}x^{2} + \frac{g}{4}x^{4} \rightarrow V(x) = \frac{\Omega^{2}}{2}x^{2} + \frac{g}{4}(rx^{2} + x^{4})$ $(r := 2(\omega^{2} - \Omega^{2})/g)$ Feynman, Kleinert,... (1986)

minimize ground state energy w.r.t. Ω :

QCD thermodynamics at high ${\cal T}$

- The same problem of poor convergence resides in the QCD EoS at high T:

Review by Su(2012)

- Hot QCD EoS with improved convergence confronting

Hard Dense Loops (HDLs)

- Hard dense loops (HDLs):

T=0 and $\mu>0$ counterpart of the HTLs

cf. thermal quark mass:

$$m_q^2 = \frac{g^2}{6} \left(\frac{T^2 + \frac{\mu^2}{\pi^2}}{\pi^2} \right)$$

- Parallelism between $T \leftrightarrow \mu$ has been studied Manuel (1996)

- EoS calculations at T = 0:

- Baier, Redlich: hep-ph/9908372
- Andersen, Strickland: hep-ph/0206196

What we calculate here

Quark contribution to the pressure *p*:

$p(\mu) = \operatorname{Tr} \log S^{-1}$ HDL resummed full propagator

$$= \sum_{\{K\}} \ln \det \left[\not{k} - M_f - \Sigma(i\tilde{\omega}_n + \mu_f, k) \right]$$

Strange quark mass is included

Self-energy Σ in HDL approximation:

$$\Sigma \equiv \frac{m_q^2}{k} \gamma^0 Q_0 \left(\frac{k_0}{k}\right) + \frac{m_q^2}{k} \gamma \cdot \hat{k} \left[1 - \frac{k_0}{k} Q_0 \left(\frac{k_0}{k}\right)\right] \qquad \text{(Legendre function:} \\ Q_0(x) = \frac{1}{2} \log \frac{x+1}{x-1} \text{)}$$

Integration contour deformation:

tedious calculation...

Diagrammatic argument

Taken from A. Kurkela's slide 19

In terms of the 2PI language

- **2PI formalism** employs propagator with the self-energy insertion \rightarrow quasi-particle approximation
- May not be a systematic expansion in the coupling α_s

$\bar{\Lambda}$ (renormalization scale) dependence

- Use perturbative expression for screening mass m_q in Σ :

$$m_q^2 = \frac{4\alpha_s(\bar{\Lambda})}{3\pi} \mu^2 \qquad (\Sigma \equiv \frac{m_q^2}{k} \gamma^0 Q_0\left(\frac{k_0}{k}\right) + \frac{m_q^2}{k} \gamma \cdot \hat{k} \left[1 - \frac{k_0}{k} Q_0\left(\frac{k_0}{k}\right)\right])$$

- Renormalization scale $\overline{\Lambda}$ dependence enters the theory through the running coupling $\alpha_s(\overline{\Lambda})$:
- $\bar{\Lambda}$: only undetermined const. set to the typical scale of system: $\bar{\Lambda} = 2\mu$

"uncertainty" of $\bar{\Lambda}$ is evaluated as:

 $\bar{\Lambda} \in [\mu, 4\mu]$

$$\alpha_{s}(\bar{\Lambda}) = \frac{4\pi}{\beta_{0}\log(\bar{\Lambda}^{2}/\Lambda_{\overline{\text{MS}}}^{2})} \times \left[1 - \frac{2\beta_{1}}{\beta_{0}^{2}}\frac{\log^{2}(\bar{\Lambda}^{2}/\Lambda_{\overline{\text{MS}}}^{2})}{\log(\bar{\Lambda}^{2}/\Lambda_{\overline{\text{MS}}}^{2})}\right]$$

$$(\Lambda_{\overline{\mathrm{MS}}} = 378 \,\mathrm{MeV})$$

Outline of the talk

- Introduction
- Hard Dense Loop (HDL) resummation and the setup of calculations
- The result for the EoS and its phenomenological implication
- Summary

Result from the HDL resummed QCD

Fujimoto, Fukushima: 2011.10891 (2020)

Result from the HDL resumed QCD Fujimoto, Fukushima: 2011.10891 (2020)

Heuristic argument

Fujimoto, Fukushima: 2011.10891 (2020)

Pressure does not differ at constant μ

Density is screened in HDL resummation at constant μ

→ in HDL resummation, the same value of p realizes at lower $n_{\rm B}$ especially for $\bar{\Lambda} = \mu$

Result from the HDL resumed QCD Fujimoto, Fukushima: 2011.10891 (2020)

Speed of sound

Fujimoto, Fukushima: 2011.10891 (2020)

- Speed of sound: $c_s^2 = \partial p / \partial \epsilon$; asymptotic freedom: $c_s^2 \rightarrow 1/3$ ("conformal limit")

Speed of sound

- Tews,Carlson,Gandolfi,Reddy (2018) - The commonly shown graph for speed of sound
- Neutron stars Causality: $c_S^2 < 1$ this scenario may also be possible! (b) $\begin{bmatrix} C^2 \end{bmatrix}$ 2/3 $\vec{\mathcal{S}}_{\mathcal{O}}$ Conforma 1/3Nuclea Neutron matter (a)Perturbative QCD **Perturbative** theory 3 5 50100 1502 4 $n [n_0]$

If $c_s^2 > 1/3$ at high density, then there must be a peak Many discussions, e.g., Hippert, Fraga, Noronha (2021)

Bedaque, Steiner (2015)

Smooth matching to the nuclear EoS?

Fujimoto, Fukushima: 2011.10891 (2020)

APR conventional nuclear EoS Akmal,Pandharipande,Ravenhall (1998) 29

Smooth matching to the nuclear EoS?

Fujimoto, Fukushima: 2011.10891 (2020)

30

Observational constraint

Annala, Gorda, Kurkela, Nattila, Vuorinen (2019)

Observational constraint

Annala, Gorda, Kurkela, Nattila, Vuorinen (2019)

Discussion: conventional pQCD vs HDLpt

mismatch already at the order of
$$\mathcal{O}(\alpha_s)$$
:

$$\frac{p_{\text{HDLpt}}}{p_{\text{ideal}}} \simeq 1 - 2N_c \frac{m_q^2}{\mu^2} + \mathcal{O}\left(\frac{m_q^4}{\mu^4}\right) = 1 - 4\frac{\alpha_s}{\pi} + \mathcal{O}(\alpha_s^2)$$

$$\frac{p_{\text{pQCD}}}{p_{\text{ideal}}} = 1 - 2\frac{\alpha_s}{\pi} - \mathcal{O}(\alpha_s^2)$$

Resolving the $\mathcal{O}(\alpha_s)$ discrepancy

- mismatch already at the order of
$$\mathcal{O}(\alpha_s)$$
:

$$\frac{p_{\text{HDLpt}}}{p_{\text{ideal}}} \simeq 1 - 2N_c \frac{m_q^2}{\mu^2} + \mathcal{O}\left(\frac{m_q^4}{\mu^4}\right) = 1 - 4\frac{\alpha_s}{\pi} + \mathcal{O}(\alpha_s^2)$$

$$\frac{p_{\text{pQCD}}}{p_{\text{ideal}}} = 1 - 2\frac{\alpha_s}{\pi} - \mathcal{O}(\alpha_s^2)$$

Add
$$p_{\rm corr} = 2 \frac{\alpha_s}{\pi} p_{\rm ideal}$$
 to $p_{\rm HDLpt}$ to remedy the $\mathcal{O}(\alpha_s)$ discrepancy

- $c_s^2 < 1/3$ in the pQCD calculation is attributed to negative β-function at $\mathcal{O}(\alpha_s)$, so we care about $\mathcal{O}(\alpha_s)$ discrepancy

Resolving the $\mathcal{O}(\alpha_s)$ discrepancy Fujimoto, Fukushima: 2011.10891 (2020)

Discussion: strangeness content

- Fraction of the strange quarks:

Outline of the talk

- Introduction
- Hard Dense Loop (HDL) resummation and the setup of calculations
- The result for the EoS and its phenomenological implication
- Summary

Summary and outlook

- Resumming hard dense loops: systematic reorganization of perturbation theory, convergence improved
- The result turned out to extend the pQCD applicability down to the realistic density in neutron stars
- Several issues to be explored:
 - * Deeper reason why uncertainty is smaller?
 - * Evaluating higher order 2PI skeleton diagrams?
 - * Multi-pronged *ab initio* approach to the EoS: QCD + ChEFT + NS observation + (QHC?) + ...