Is the Standard Model in the Swampland? Consistency Requirement from Gravitational Scattering

Katsuki Aoki (YITP, Kyoto University)

<u>KA</u>, T.Q. Loc, T. Noumi, and J. Tokuda, PRL 127 (2021) 9, 091602. J. Tokuda, <u>KA</u>, and S. Hirano, JHEP 11 (2020) 054.

EFT is ubiquitous

□ IR physics must be insensitive to UV physics.

Fundamental theory

Effective description here = low-energy effective (field) theory

Consistency between IR and UV

□ IR physics must be insensitive to UV physics.

but, not totally independent!

□ There are general consistency relations b/w IR and UV.

□ The consistency relations may be used to

- ✓ make predictions on IR physics,
- \checkmark or, extract information about the UV physics.

Swampland program Vafa, 2005.

The swampland refers to low-energy EF1

EFT1

landscape

EFT5

swampland

Apparently "consistent", but "inconsistent" with UV

Seminar@iTHEMS, 2nd Nov. 2021

EFT4

"Consistency" conditions

□ There would be no definite swampland criteria because we don't know UV. However, we have some expectations (or "plausible" assumptions) on UV. → Any self-consistency conditions from UV assumptions?

□ Scattering amplitudes do a job!

<u>General assumptions</u> are enough to find strong constraints.

Poincare invariance, Unitarity, Analyticity, Boundedness.

The last two are inferred from causality & locality. Sometimes called "axiomatic" S-matrix theory.

A textbook example: partial wave unitarity $\Rightarrow |\mathcal{M}(s,\theta)| < 1$

 $s = E_{\rm CM}^2$ and θ : scattering angle

The constraints on EFTs are often called positivity bounds. Adams, et al. 2006

Is the Standard Model in the Swampland?

□ SM + GR have to pass <u>swampland criteria</u> at low-energies. = positivity bounds

↔ SM + GR may fall into swampland if extrapolated to high-energy.

 \Rightarrow the cutoff of SM + GR = new physics is required as a consistency.

c.f. Theory of massive weak boson violates perturbative unitarity at TeV. \Rightarrow The Higgs boson should be needed below TeV. Lee et al. 1977.

Gravity plays an essential role.

Standard Model alone: UV complete ⇒ Positivity bounds are trivially satisfied at any scales (as it should be).

Standard Model + General Relativity \Rightarrow New physics (= quantum gravity?) is needed at or below 10¹⁶GeV. <u>KA</u>, T.Q. Loc, T. Noumi, and J. Tokuda, 2104.09682.

Contents

- **1. General properties of scattering amplitudes**
- 2. Gravitational positivity bounds
- 3. The cutoff of SM + GR
- 4. Summary and discussions

"Axiomatic" S-matrix theory

Our assumptions or "principles" on S-matrix: Poincare invariance, Unitarity, Analyticity, Boundedness.

I explain what they are and what are implications from them. Ref: *The analytic S-matrix*, R. J. Eden et al, 1966

*Analyticity and boundedness are well-understood in gapped system, while they are still less known in gapless system including gravity.

Assume massless particles (photon&graviton) are weakly coupled so that these properties are inferred from perturbative calculations.

- ✓ Photon → OK because $\alpha \simeq 1/137 \ll 1$.
- ✓ Graviton → OK if UV completed below $M_{\rm pl}$.

Super-Planckian physics is subtle...

The Analytic

S-Matrix

R.J.EDEN P.V.LANDSHOFF

D.I.OLIVE J.C.POLKINGHORNE

For simplicity, we focus on scattering of identical spin-0 particles here.

Translation + Lorentz (Poincare)

Suppose the translation invariance

 \Rightarrow The asymptotic states are labelled by four momenta p.

 $= \langle p_3, p_4 | S | p_1, p_2 \rangle$

Initial states Final states Probability

The S-matrix may be separated into trivial part and others. S = 1 + iR

$$\langle p_3, p_4 | R | p_1, p_2 \rangle = (2\pi)^4 \delta(p_1 + p_2 - p_3 - p_4) \mathcal{M}(p_1, p_2, p_3, p_4)$$
conservation amplitude

□ Lorentz invariance → $\mathcal{M}(p_1, p_2, p_3, p_4) = \mathcal{M}(s, t, u)$

$$s := -(p_1 + p_2)^2, \ t := -(p_1 - p_3)^2, \ u := -(p_1 - p_4)^2$$
$$s + t + u = \sum m_i^2 = 4m^2$$

Unitarity

□ We suppose that the probability is conserved: $SS^{\dagger} = S^{\dagger}S = 1 \Leftrightarrow R - R^{\dagger} = iR^{\dagger}R$ $\Rightarrow 2\text{Im}\langle p_3, p_4 | R | p_1, p_2 \rangle = \sum_n \langle p_3, p_4 | R | n \rangle \langle p_1, p_2 | R | n \rangle^*$

The completeness relation: $\sum_n |n\rangle\langle n|=1$

This is very simple but provide two important consequences.

1. If
$$p_1 = p_3 \ (p_2 = p_4) \Leftrightarrow t \equiv -(p_1 - p_3)^2 = 0$$

 $\Rightarrow 2 \text{Im} \langle p_1, p_2 | R | p_1, p_2 \rangle = \sum_n |\langle p_1, p_2 | R | n \rangle|^2$ Optical theorem
In particular, we get $\text{Im} \mathcal{M}(s \ge 4m^2, t \to 0) > 0$

2. The unitarity equation implies the existence of singularities of $\mathcal{M}(s,t)$

Analyticity

$$2\mathrm{Im}\langle p_3, p_4 | R | p_1, p_2 \rangle = \sum \langle p_3, p_4 | R | n \rangle \langle p_1, p_2 | R | n \rangle^*$$

□ Singularities (imaginary parts) from internal on-shell states. $s = E_{CM}^2$

 $s < (2m)^2$: only the on-shell state is one particle state

 $(2m)^2 \le s < (3m)^2$: two particle states

$$(3m)^2 \le s < (4m)^2$$
: two + three particle states

Seminar@iTHEMS, 2nd Nov. 2021

 p_1

 p_2

 p_{\cdot}

p

q

 q_2

 $q_2 \\ q_3$

Analyticity

□ The analytic structure of amplitude for a fixed t:

*The t-singularities do not arise because t is fixed away from singularity.

There are no other singularities (analyticity assumption).

Singularities from massless particles (photon&graviton) could be subtle. But, they are weakly coupled below M_{pl} and just give poles at leading order.

Boundedness and dispersion relation

□ We need to know asymptotic behaviour to go to the nest step.

Froissart bound Froissart, 1961; Martin, 1963.

For a gapped system, all the mentioned properties + locality implies $|\mathcal{M}(s,t=0)| < |s^2| \quad \text{as} \quad |s| \to \infty$

*The Froissart bound itself is slightly stronger than this.

□ Boundedness in gravity?

No rigorous discussion, but the similar boundedness is widely accepted thanks to the knowledge of perturbative string

$$\mathcal{M}_{\rm GR} \sim -\frac{s^2}{M_{\rm pl}^2 t} \to \mathcal{M}_{\rm Regge, gra} \sim -\frac{s^{2+\alpha' t+\cdots}}{M_{\rm pl}^2 t} < |s^2| \quad \text{for} \quad t < 0$$

Quantum gravity would soften the graviton exchange.

Regge behaviour = exchanging of a family of particles

❑ Some theories exhibit the behaviour

$$\mathcal{M}(s,t) \sim \frac{\beta(t)}{\sin \pi \alpha(t)} \left(\frac{s}{-t}\right)^{\alpha(t)}$$
 $\operatorname{Re} \alpha \ge L : \operatorname{finite}$

in the Regge limit $s \to \infty$ while t is kept finite. Typically, $\alpha(t) = \alpha_0 + \alpha' t$

See e.g. *The analytic S-matrix*, R. J. Eden et al.

The Theory of Complex Angular Momenta, V. N. Gribov.

□ What does it mean?

- ✓ M has singularities at $\alpha(t) = J \in$ integers
- ✓ Spin-J particle exchange $\propto s^J$
- $\Rightarrow \mathcal{M}$ represents a sum of higher spin particle exchanges.

In QCD: higher spin particles = called Reggeon and Pomeron In string: higher spin particles = string excitations \Rightarrow soften the amplitude

Usage of Analyticity + Boundedness

Dispersion relation

 \Box sⁿ part of amplitude are determined by singularities (= imaginary part).

$$\begin{aligned} \frac{\partial^n}{\partial s^n} \mathcal{M}(s, t_0) &= \frac{n!}{2\pi i} \oint_c ds' \frac{\mathcal{M}(s', t_0)}{(s' - s)^{n+1}} \\ &= \frac{n!}{\pi} \int_{4m^2}^{\infty} ds' \frac{2\mathrm{Im}\mathcal{M}(s', t_0)}{(s' - s)^{n+1}} + \text{u-channel + poles} \\ &(n \ge 2) \end{aligned}$$

= s,u-poles and s,u-branch cuts

= exchanging particles

 $\Rightarrow s^n \ (n \ge 2)$ part of amplitude are originated from exchanging particles rather than a contact diagram.

Contents

- **1. General properties of scattering amplitudes**
- 2. Gravitational positivity bounds
- 3. The cutoff of SM + GR
- 4. Summary and discussions

Positivity bounds

□ The dispersion relation

$$\frac{\partial^n}{\partial s^n}\mathcal{M}(s,t<0) = \frac{n!}{\pi} \int_{4m^2}^{\infty} ds' \frac{\mathrm{Im}\mathcal{M}(s',t<0)}{(s'-s)^{n+1}} + \text{u-channel} + \text{s,u-poles}$$

It is useful to introduce the pole subtracted amplitude

 $\widetilde{\mathcal{M}}:=\mathcal{M}-(s,t,u)\text{-poles}$

$$\Rightarrow \frac{\partial^n}{\partial s^n} \widetilde{\mathcal{M}}(s, t < 0) = \frac{n!}{\pi} \int_{4m^2}^{\infty} ds' \frac{\mathrm{Im}\mathcal{M}(s', t < 0)}{(s' - s)^{n+1}} + \text{u-channel} + \text{t-poles}$$

□ t-pole
$$\propto \frac{\partial^n}{\partial s^n} \frac{s^J}{t - m_J^2} = 0$$
 for $n > J$ where J is the spin. $(n \ge 2)$

Note that poles arise from stable particles (= light particles). \Rightarrow Only the graviton is essential for the t-pole term.

 $(n \geq 2)$

Positivity bounds without gravity

□ We evaluate the dispersion relation at $s = 2m^2 - t/2$.

$$\partial_s^n \widetilde{\mathcal{M}}|_{s=2m^2-t/2} = \frac{2n!}{\pi} \int_{4m^2}^{\infty} ds' \frac{\operatorname{Im}\mathcal{M}(s', t<0)}{(s'-2m^2+t/2)^{n+1}} + \underbrace{\mathsf{t-poles}}_{(n\geq 2)}$$

where $s \leftrightarrow u$ crossing is used.

 \Box LHS can be computed by EFT since $\mathcal{M}_{\rm EFT}(s,t) = \mathcal{M}(s,t)$ at $s,t < \Lambda^2$

□ RHS involves UV part but we know optical theorem:

 $\mathrm{Im}\mathcal{M}(s \ge 4m^2, t \to 0) > 0$

⇒ The positivity bounds $\partial_s^n \widetilde{\mathcal{M}}_{EFT}|_{s=2m^2-t/2,t=0} > 0$ ($n \ge 2$) A. Adams et al. 2006 (for n = 2).

EFT predicting a negative sign is "inconsistent" or in swampland.

Simple interpretation

□ EFT usually accompanies with derivative interactions.

The bounds can be diagrammatically understood.

 $\partial_s^n \widetilde{\mathcal{M}}_{EFT}|_{s=2m^2-t/2,t=0} = \text{ singularities = particle exchange}$

EFT operators are obtained by integrating out internal states.

Improved positivity

C. de Rham et al. 2017; B. Bellazzzini, 2017

EFF can compute some of RHS.

$$\partial_s^n \widetilde{\mathcal{M}}|_{s=2m^2 - t/2} = \frac{2n!}{\pi} \int_{4m^2}^{\infty} ds' \frac{\text{Im}\mathcal{M}(s', t < 0)}{(s' - 2m^2 + t/2)^{n+1}} + \frac{t-\text{poles}}{(n \ge 2)}$$
(n \ge 2)

 $\Box \text{ We have } \mathcal{M}_{\rm EFT}(s,t) = \mathcal{M}(s,t) \text{ at } s, t < \Lambda^2.$

EFT can compute the quantity

$$B^{(n)}(t,\Lambda) := \partial_s^n \widetilde{\mathcal{M}}|_{s=2m^2 - t/2} - \frac{2n!}{\pi} \int_{4m^2}^{\Lambda^2} ds' \frac{\mathrm{Im}\mathcal{M}(s',t)}{(s' - 2m^2 + t/2)^{n+1}}$$

⇒ Improved positivity bounds = bounds on cutoff

$$B^{(n)}(t \to -0, \Lambda) = \frac{2n!}{\pi} \int_{\Lambda^2}^{\infty} ds' \frac{\mathrm{Im}\mathcal{M}(s', t \to -0)}{(s' - 2m^2)^{n+1}} > 0$$

Note that the cutoff Λ would be unknown parameter. Increasing Λ means extrapolating EFT to a higher scale.

Gravitational positivity J. Tokuda, <u>KA</u>, and S. Hirano, JHEP 11 (2020) 054.

Graviton provides the t-pole term at n = 2.

$$B^{(2)}(t < 0, \Lambda) = \frac{2n!}{\pi} \int_{\Lambda^2}^{\infty} ds' \frac{\text{Im}\mathcal{M}(s', t < 0)}{(s' - 2m^2 + t/2)^3} + \text{graviton t-pole}$$

where graviton t-pole $\propto \frac{1}{M_{\text{pl}}^2 t}$
The forward limit $t \to -0$ is subtle because $\frac{1}{M_{\text{pl}}^2 t} \to -\infty \Rightarrow B^{(2)} > -\infty???$

D Note that $B^{(2)}$ is the regularised amplitude and has no t-pole.

$$B^{(2)}(t \to -0, \Lambda) : \text{finite} \Rightarrow \int_{\Lambda^2}^{\infty} ds' \to +\infty \text{ as } t \to -0$$

We must have " $\infty - \infty$ " in RHS. How can we evaluate the finite part?

Gravitational positivity

□ This is crucially related to the Regge behaviour = UV completion

$$B^{(2)}(t < 0, \Lambda) = \frac{2n!}{\pi} \int_{\Lambda^2}^{\infty} ds' \frac{\text{Im}\mathcal{M}(s', t < 0)}{(s' - 2m^2 + t/2)^3} + \text{graviton t-pole}$$

The integrand $\text{Im}\mathcal{M}(s', t < 0)$: physical part \Rightarrow should be finite.

The divergence must arise because of the non-convergence of integral.

□ The Regge behaviour

$$\mathrm{Im}\mathcal{M}_{\mathrm{gra,Regge}} = f(t)s^{2+\alpha't+\cdots}, \ \alpha' > 0$$

 \Rightarrow The integral converges at t < 0 while diverges as $t \rightarrow -0$.

The graviton t-pole should be cancelled by the graviton s,u-Regge states!

This is indeed the case in the perturbative string: t-pole = \sum s,u-Regge

Gravitational positivity

□ The explicit computation can be found in J. Tokuda, <u>KA</u>, and S. Hirano, JHEP 11 (2020) 054. but, the idea is very simple.

$$\begin{aligned} \text{RHS} &= \int_{\Lambda^2}^{\infty} ds' + t\text{-pole} = \int_{\Lambda}^{M_s^2} ds' + \int_{M_s^2}^{\infty} ds' + t\text{-pole} \\ \text{where } M_s \text{ is the scale when graviton is Reggeized, say the string scale.} \\ \text{We compute } \int_{M_s^2}^{\infty} ds' + t\text{-pole at a finite negative } t \text{ and then take } t \to -0. \\ \int_{M_s^2}^{\infty} ds' + t\text{-pole} = -\frac{1}{M_{\text{pl}}^2 t} + \frac{1}{M_{\text{pl}}^2 t} + \text{finite} \to \text{finite as } t \to -0 \end{aligned}$$

□ The finite part depends on the details of the Regge behaviour. However, if the physics of Regge is determined by the single scale M_s

$$\int_{M_s^2}^{\infty} ds' + t \text{-pole} = \pm \mathcal{O}(M_{\text{pl}}^{-2}M_s^{-2})$$

Gravitational positivity

□ We thus find the inequality

 $B^{(2)}(t \to -0, \Lambda) > -\mathcal{O}(M_{\mathrm{pl}}^{-2}M_s^{-2}) \qquad \text{for } \Lambda < M_s.$

*Currently, there is no rigorous argument about the value of the finite residual although it can be computed once UV is assumed. $O(M_{pl}^{-2}M_s^{-2})$ is our working assumption.

See also Y. Hamada+ 2019, B. Bellazzini+ 2019, L. Alberte+ 2020, M. Herrero-Valea+ 2020, N. Arkani-Hamed+ 2020, S. Caron-Huot+ 2021.

□ Without knowledge (or assumption) about quantum gravity → Graviton t-pole "trivialises" the positivity. $B^{(2)} > -\infty???$ *It may be *suppressed* by non-forward limit amplitudes. S. Caron-Huot+ 2021.

□ With knowledge (assumption) about quantum gravity

→ The tree-level gravity contribution is subtracted as a consistency with UV.
 We can find non-trivial constraints on gravitational EFTs from loops.

Contents

- **1. General properties of scattering amplitudes**
- 2. Gravitational positivity bounds
- 3. The cutoff of SM + GR
- 4. Summary and discussions

QFT is EFT

□ Let us consider a renormalizable QFT coupled to GR.

$$\mathcal{M} = \mathcal{M}_{\text{QFT}} + \mathcal{M}_{\text{GR}} \to \mathcal{M}_{\text{QFT}} \text{ as } M_{\text{pl}} \to \infty$$

 $B^{(2)} = B^{(2)}_{\text{QFT}} + B^{(2)}_{\text{GR}}$

□ QFT alone is supposed to be UV complete (= satisfy general properties)
 ⇒ trivially satisfies the dispersion relation.

$$B_{\rm QFT}^{(2)}(\Lambda) \equiv \frac{2n!}{\pi} \int_{\Lambda^2}^{\infty} ds' \frac{{\rm Im}\mathcal{M}_{\rm QFT}(s', t \to -0)}{(s'-2m^2)^3}$$

concluding the behaviour $B_{\rm QFT}^{(2)}(\Lambda \to \infty) = 0$ $(B_{\rm QFT}^{(2)}(\Lambda) > 0 \text{ for finite } \Lambda)$

□ Gravitational interactions are not UV complete within GR
 ⇒ They do not need to follow the dispersion relation at UV (GR = EFT).

 $B_{\rm GR}^{(2)}(\Lambda \to \infty) \neq 0$

Cutoff of renormalizable QFT

□ The positivity bound conclude

$$B^{(2)}(\Lambda) > -\mathcal{O}(M_{\rm pl}^{-2}M_s^{-2}) \qquad \qquad \text{for } \Lambda < M_s$$

where $B^{(2)} = B^{(2)}_{\text{OFT}} + B^{(2)}_{\text{GR}}$

We have the behaviours

 $B_{\rm OFT}^{(2)}(\Lambda \to \infty) = 0, \qquad B_{\rm GR}^{(2)}(\Lambda \to \infty) \neq 0$

GR provides a negative contribution in some scattering processes. e.g. C. Cheung+2014, S. Andriolo+2018, L. Alberte+2020.

 $B_{\rm CB}^{(2)}(\Lambda \to \infty) = \text{negative constant} \qquad |B_{\rm GB}^{(2)}| \gg M_{\rm pl}^{-2} M_s^{-2}$

 \Rightarrow Gravity eventually dominates over the particle interactions, violating the positivity bound at UV.

QFT + GR cannot be extrapolated into arbitrary high-energy scale! As it should be because quantum gravity is needed.

Cutoff of Standard Model

□ What we need is to compute scattering amplitudes in SM+GR and to show when the inequality is saturated.

 $B^{(2)}(\Lambda) \simeq 0 \Rightarrow \Lambda = \Lambda_{\rm cut}$

where $B^{(2)} = B^{(2)}_{SM} + B^{(2)}_{GR}$ Recall $B^{(2)}(\Lambda) \gtrsim 0$ and $B^{(2)}(\Lambda \to \infty) < 0$

□ We consider the light-by-light scattering $(\gamma \gamma \rightarrow \gamma \gamma)$.

The helicity states are summed to manifest the $s \leftrightarrow u$ crossing.

QED and **GR**

See L. Alberte+2020.

□ The leading contributions are electron loops

Note that the tree-level graviton exchange does not contribute to $B_{GR}^{(2)}$. Also we should have $B_{GR}^{(2)} \propto \frac{\alpha}{m^2 M_{pl}^2} \rightarrow$ lightest charged state is dominant. Seminar@iTHEMS, 2nd Nov. 2021

Weak interaction

□ The leading contributions are W boson loops

Leptons just provide the same contribution as electrons, while W boson (spin-1) loops provide qualitatively different contribution.

$$B_{\rm Weak}^{(2)}(\Lambda) \approx \frac{128\alpha^2}{m_W^2 \Lambda^2} \quad \text{at } \Lambda \gg m_W$$

Electroweak + GR

- $B_{\rm QED}^{(2)}(\Lambda) \approx \frac{64\alpha^2}{\Lambda^4} \left(\ln \frac{\Lambda}{m_o} \frac{1}{4} \right) \propto \Lambda^{-4}$ ✓ Spin-1/2 loop: $B_{\rm Weak}^{(2)}(\Lambda) \approx \frac{128\alpha^2}{m_{\odot}^2 \Lambda^2} \propto \Lambda^{-2}$ ✓ Spin-1 loop: $B^{(2)}_{
 m spin-0} pprox rac{4lpha^2}{\Lambda 4} \propto \Lambda^{-4}$ See L. Alberte+2020. ✓ c.f spin-0 loop: $B_{\rm GR}^{(2)}(\Lambda) \approx -\frac{22\alpha}{45\pi m_e^2 M_{\rm pl}^2} \propto \Lambda^0$ \checkmark GR contribution:
- The spin-1 is dominant and the mass appears in the denominator \Rightarrow the lightest charged particle (low-energy physics) determines $B^{(2)}(\Lambda)$, implying beyond SM (described within QFT) is irrelevant.
 - Our result must be universal against unknown new physics.

Electroweak + GR

□ Ignoring QCD, we analytically find the maximum cutoff of EW + GR

$$\Lambda_{\rm EW} = \sqrt{\frac{2880\pi\alpha}{11}} \frac{m_e M_{\rm pl}}{m_W} \simeq 3.8 \times 10^{13} {\rm GeV}$$

□ However, the lightest charged spin-1 particle is not W boson.

EW scale ~ 100 GeV \leftrightarrow QCD scale ~ 100 MeV

Also, QCD is strongly coupled and predicts higher spin mesons as well.

□ We have to take into account QCD!

We cannot use perturbative calculations even at UV since $B^{(2)}$ is computed by the forward limit amplitude $t \rightarrow 0$.

The region $s \gg \text{GeV}^2$, $t \ll \text{GeV}^2$ may be analysed by the Regge theory.

VDM-Regge model

M. Klusek-Gawenda+ 2016

An elementary process

Resummation

Quark pairs \simeq vector mesons gluon exchanges \simeq Reggeon&Pomeron exchanges

Photon transforms mesons and mesons undergoes hadronic interactions.

This would be a good model to describe QCD process in the Regge limit. $s \to \infty$ while t is kept finite

We use the experimental values and extrapolate it to compute $B^{(2)}_{
m QCD}$

Cutoff of Standard Model

SM + GR (+ beyond SM) is "inconsistent" if it is extrapolated into 10^{16} GeV.

Summary

□ Poincare invariance, unitarity, analyticity, and boundedness.

 \Rightarrow The positivity bounds: $B^{(2)}(\Lambda) > -\mathcal{O}(M_{\text{pl}}^{-2}M_s^{-2})$ at $\Lambda < M_s$

where M_s is the scale of quantum gravity.

 \square What we find: the inequality does not hold above $\Lambda_{\rm SM} \simeq 3 \times 10^{16} {\rm GeV}$

□ At least this implies we need a new physics at or below 10¹⁶GeV.
 However, beyond SM (e.g. SUSY) may not help to push up Λ.
 ⇒ We probably need quantum gravity there!

In fact, the positivity bound can be satisfied if $M_s < \Lambda_{\rm SM} \simeq 3 \times 10^{16} {\rm GeV}$

Discussions

 10¹⁶GeV is the expected GUT scale (unification of particle interactions). while our result is obtained by consistency between gravity and particle.
 Seems no relation, but is there a hidden reason? Or just coincidence?

Our result suggests new swampland condition

$$\Lambda < \sqrt{\frac{2880\pi\alpha}{11}} \frac{m_e M_{\rm pl}}{m_W} \Leftrightarrow y_e \sin\theta_W > \sqrt{\frac{11}{1440}} \frac{\Lambda}{M_{\rm pl}} \quad \text{without QCD.}$$

From other scatterings, say HH \rightarrow HH etc. \Rightarrow $g_1, g_2, y_e \gtrsim \Lambda/M_{pl}$???

Particles must have coupling to other particles? Reminiscent of weak gravity conjecture.

□ Finally, we need to understand more about the assumptions and S-matrix. IR physics \leftrightarrow UV properties of S-matrix

Crossing symmetry

□ One amplitude represents three processes after analytic continuation.

